Advertisement

Lithium Batteries

  • Christian Julien
  • Alain Mauger
  • Ashok Vijh
  • Karim Zaghib

Abstract

First attempts to create batteries using an ion other than the proton were done in the 1970s with the fabrication of lithium primary cells. It was the fast development of the electronic devices that pouch electrochemists in the new world of lithium. After primary cells came secondary (rechargeable) lithium batteries in the 1980s. Innovations and advances in insertion electrode materials have improved the stored energy compared with other systems. For half-a-century, lithium batteries are increasingly used in a huge number of applications from watches, portable electronics to electric transportation and stationary grid storage. While older technologies such as Zn-MnO2, lead-acid, and Ni-Cd are still used, the increasing battery market is now dominated by Li-ion batteries. The purpose of this chapter is to introduce the technologies of primary and secondary lithium electrochemical cells with a special focus on lithium-ion batteries and lithium-metal polymer batteries.

Keywords

Polymer Electrolyte Lower Unoccupied Molecular Orbital Solid Electrolyte Interphase Lithium Cell Secondary Lithium Batterie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Julien C, Nazri GA (1994) Solid state batteries: materials design and optimization. Kluwer, BostonCrossRefGoogle Scholar
  2. 2.
    Goonan TG (2012) Lithium use in batteries. US Geological Survey Circular 1371, Reston, Virginia. http://pubs.usgs.gov/circ/1371/pdf/circ1371_508.pdf
  3. 3.
    Pistoia G (1994) Lithium batteries: new materials, developments and perspectives. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Bergveld HJ, Kruijt WS, Notten PHL (2002) Battery management systems, design by modelling. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  6. 6.
    Van Schalkwijk WA, Scrosati B (2002) Advances in lithium batteries. Kluwer, New YorkCrossRefGoogle Scholar
  7. 7.
    Nazri GA, Pistoia G (2003) Lithium batteries, science and technology. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Balbuena PB, Wang Y (2004) Lithium-ion batteries, solid-electrolyte interphase. Imperial College Press, LondonCrossRefGoogle Scholar
  9. 9.
    Wakihara M, Yamamoto O (2008) Lithium ion batteries: fundamentals and performance. Wiley, WeinheimGoogle Scholar
  10. 10.
    Yoshio M, Brodd RJ, Kozawa A (2009) Lithium batteries, science and technologies. Springer, New YorkCrossRefGoogle Scholar
  11. 11.
    Ozawa K (2009) Lithium ion rechargeable batteries. Wiley, WeinheimCrossRefGoogle Scholar
  12. 12.
    Park CR (ed) (2010) Lithium-ion batteries. InTech, Rijeka (Croatia) Open access book. http://www.intechopen.com/books/lithium-ion-batteries
  13. 13.
    Yuan X, Liu H, Jiujun Z (2012) Lithium batteries: advanced materials and technologies. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    Belharouak I (ed) (2012) Lithium batteries new developments. InTech, Rijeka (Croatia) Open access book. http://www.intechopen.com/books/lithium-ion-batteries-new-developments
  15. 15.
    Abu-Lebdeh Y, Davidson I (2013) Nanotechnology for lithium-ion batteries. Springer, New YorkCrossRefGoogle Scholar
  16. 16.
    Scrosati B, Abraham KM, Van Schalkwijk WA, Hassoun J (2013) Lithium batteries: advanced technologies and applications. Wiley, HobokenCrossRefGoogle Scholar
  17. 17.
    Jasinski R (1967) High-energy batteries. Plenum, New YorkCrossRefGoogle Scholar
  18. 18.
    Julien C (2000) Design considerations for lithium batteries. In: Julien C, Stoynov Z (eds) Materials for lithium-ion batteries. Kluwer, Dordrecht, pp 1–20CrossRefGoogle Scholar
  19. 19.
    Armand MB, Whittingham MS, Huggins RA (1972) The iron cyanide bronzes. Mater Res Bull 7:101–108CrossRefGoogle Scholar
  20. 20.
    Armand MB (1973) Lithium intercalation in CrO3 using n-butyllithium. In: Van Gool W (ed) Fast ion transport in solids. North Holland, Amsterdam, pp 665–673Google Scholar
  21. 21.
    Gamble FR, Osiecki JH, Cais M, Pisharody R, DiSalvo FL, Geballe TH (1971) Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174:493–497CrossRefGoogle Scholar
  22. 22.
    Dines MB (1975) Intercalation of metallocenes in the layered transition-metal dichalcogenides. Science 188:1210–1211CrossRefGoogle Scholar
  23. 23.
    Dines MB (1975) Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides. Mater Res Bull 10:287–292CrossRefGoogle Scholar
  24. 24.
    Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenaide hosts. Prog Solid State Chem 12:41–99CrossRefGoogle Scholar
  25. 25.
    Whittingham MS (1982) Intercalation chemistry: an introduction. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 1–18Google Scholar
  26. 26.
    Winn DA, Steele BCH (1976) Thermodynamic characterization of non-stoichiometric titanium disulphide. Mater Res Bull 11:551–558CrossRefGoogle Scholar
  27. 27.
    Winn DA, Shemilt JM, Steele BCH (1976) Titanium disulphide: a solid solution electrode for sodium and lithium. Mater Res Bull 11:559–566CrossRefGoogle Scholar
  28. 28.
    Whittingham MS (1977) Preparation of stoichiometric titanium disulfide. US Patent 4,007,055, Accessed 8 Feb 1977Google Scholar
  29. 29.
    Murphy DW, Trumbore FA (1976) The chemistry of TiS3 and NbSe3 cathodes. J Electrochem Soc 123:960–964CrossRefGoogle Scholar
  30. 30.
    Dickens PG, French SJ, Hight AT, Pye MF (1979) Phase relationships in the ambient temperature LixV2O5 system (0.1 < x < 1.0). Mater Res Bull 14:1295–1299CrossRefGoogle Scholar
  31. 31.
    Toronto Globe and Mail (1989) Cellular phone recall may cause setback for Moli. Accessed 15 Aug 1989Google Scholar
  32. 32.
    Akridge JR, Vourlis H (1986) Solid state batteries using vitreous solid electrolytes. Solid State Ionics 18–19:1082–1087CrossRefGoogle Scholar
  33. 33.
    Anderman M, Lunquist JT, Johnson SL, Gionannoi TR (1989) Rechargeable lithium-titanium disulphide cells of spirally-wound design. J Power Sourc 26:309–312CrossRefGoogle Scholar
  34. 34.
    Abraham KM, Pasquariello DM, Schwartz DA (1989) Practical rechargeable lithium batteries. J Power Sourc 26:247–255CrossRefGoogle Scholar
  35. 35.
    Armand M (1980) Intercalation electrodes. In: Murphy DW, Broadhead J, Steele BCH (eds) Materials for advanced batteries. Plenum Press, New York, pp 145–161CrossRefGoogle Scholar
  36. 36.
    Lazzari M, Scrosati B (1980) A cycleable lithium organic electrolyte cell based on two intercalation electrodes. J Electrochem Soc 127:773–774CrossRefGoogle Scholar
  37. 37.
    Nagaura T, Nagamine M, Tanabe I, Miyamoto N (1989) Solid state batteries with sulfide-based solid electrolytes. Prog Batteries Sol Cells 8:84–88Google Scholar
  38. 38.
    Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Solar Cells 9:209–212Google Scholar
  39. 39.
    Goodenough JB, Mizuchima K (1981) Electrochemical cell with new fast ion conductors. US Patent 4,302,518, Accessed 24 Nov 1981Google Scholar
  40. 40.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRefGoogle Scholar
  41. 41.
    Armand M, Touzain P (1977) Graphite intercalation compounds as cathode materials. Mater Sci Eng 31:319–329CrossRefGoogle Scholar
  42. 42.
    Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212–221CrossRefGoogle Scholar
  43. 43.
    Frost & Sullivan (2013) Global lithium-ion market to double despite recent issues. http://www.frost.com. Accessed 21 Feb 2013
  44. 44.
    Freedonia (2013) Batteries, study ID 3075. http://www.freedoniagroup.com/industry-category/enrg/energy-and-power-equipment.htm. Accessed Nov 2013
  45. 45.
    Julien C (1997) Solid state batteries. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, pp 372–406Google Scholar
  46. 46.
    Ritchie AG, Bowles PG, Scattergood DP (2004) Lithium-iron/iron sulphide rechargeable batteries. J Power Sourc 136:276–280CrossRefGoogle Scholar
  47. 47.
    Jensen J (1980) Energy storage. Butterworths, LondonGoogle Scholar
  48. 48.
    Holmes CF (2007) The lithium/iodine-polyvinylpyridine battery – 35 years of successful clinical use. ECS Trans 6:1–7CrossRefGoogle Scholar
  49. 49.
    Mallela VS, Ilankumaran V, Rao NS (2004) Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol J 4:201–212Google Scholar
  50. 50.
    Schlaikjer CR, Liang CC (1971) Ionic conduction in calcium doped polycrystalline lithium iodide. J Electrochem Soc 118:1447–1450CrossRefGoogle Scholar
  51. 51.
    Phillips GM, Untereker DF (1980) In: Owens BB, Margalit N (eds) Power sources for biomedical implantable applications and ambient temperature lithium batteries. The Electrochem Soc Proc Ser PV 870-4, p 195Google Scholar
  52. 52.
    Liang CC, Joshi AV, Hamilton WE (1978) Solid-state storage batteries. J Appl Electrochem 8:445–454CrossRefGoogle Scholar
  53. 53.
    Park KH, Miles MH, Bliss DE, Stilwell D, Hollins RA, Rhein RA (1988) The discharge behaviour of active metal anodes in bromine trifluoride. J Electrochem Soc 135:2901–2902CrossRefGoogle Scholar
  54. 54.
    Goodson FR, Shipman WH, McCartney JF (1978) Lithium anode, bromide trifluoride, antimony pentafluoride. US Patent 4,107,401 A, Accessed 15 Aug 1978Google Scholar
  55. 55.
    Crepy G, Buchel JP (1993) Lithium/bromide trifluoride electrochemical cell designed to be discharged after being activated and stored. US Patent 5,188,913 A, Accessed 23 Feb 1993Google Scholar
  56. 56.
    Bowden WL, Dey AN (1980) Primary Li/SOCl2 cells XI. SOCl2 reduction mechanism in a supporting electrolyte. J Electrochem Soc 127:1419–1426CrossRefGoogle Scholar
  57. 57.
    Dey AN, Holmes RW (1980) Safety studies on Li/SO2 cells: investigations of alternative organic electrolytes for improved safety. J Electrochem Soc 127:1886–1890CrossRefGoogle Scholar
  58. 58.
    PowerStream (2014) Primary lithium SO2 cells from PowerStream http://www.powerstream.com/LiPSO2.htm
  59. 59.
    Leising RA, Takeuchi ES (1993) Solid-state cathode materials for lithium batteries: effect of synthesis temperature on the physical and electrochemical properties of silver vanadium oxide. Chem Mater 5:738–742CrossRefGoogle Scholar
  60. 60.
    Holmes CF (2001) The role of lithium batteries in modern health care. J Power Sourc 97–98:739–741CrossRefGoogle Scholar
  61. 61.
    Root MJ (2010) Lithium-manganese dioxide cells for implantable defibrillator devices, discharge voltage models. J Power Sourc 195:5089–5093CrossRefGoogle Scholar
  62. 62.
    Chen K, Meritt DR, Howard WG, Schmidt CL, Skarstad PM (2006) Hybrid cathode lithium batteries for implantable medical applications. J Power Sourc 162:837–840CrossRefGoogle Scholar
  63. 63.
    Walk CR (1983) Lithium-vanadium pentoxide cells. In: Gabano JP (ed) Lithium batteries. Academic, London, pp 265–280Google Scholar
  64. 64.
    Whittingham MS (1975) Mechanism of reduction of the fluorographite cathode. J Electrochem Soc 122:526–527CrossRefGoogle Scholar
  65. 65.
    Touhara H, Kadono K, Fujii Y, Watanabe N (1987) On the structure of graphite fluoride. Z Anorg Allg Chem 544:7–20CrossRefGoogle Scholar
  66. 66.
    Lam P, Yazami R (2006) Physical characteristics and rate performance of (CFx)n (0.33 < x < 0.66) in lithium batteries. J Power Sourc 153:354–359CrossRefGoogle Scholar
  67. 67.
    Nagasubramanian G (2007) Fabrication and testing capabilities for 18650 Li/(CFx)n cells. Int J Electrochem Sci 2:913–922Google Scholar
  68. 68.
    Holmes CF, Takeuchi ES, Ebel SJ (1996) Lithium/carbon monofluoride (Li//CFx): a new pacemaker battery. Pacing Clin Electrophys 19:1836–1840CrossRefGoogle Scholar
  69. 69.
    Shmuel De-Leon (2011) Li/CFx batteries the renaissance. http://www.sdle.co.il/AllSites/810/Assets/li-cfx%20-%20the%20renaissance.pdf. Accessed 8 June 2011
  70. 70.
    Broussely M (1978) Organic solvent electrolytes for high specific energy primary cells. US Patent 4,129,691A, Accessed 12 Dec 1978Google Scholar
  71. 71.
    Webber A (2009) Low temperature Li/FeS2 battery. US paten 7,510,808B2, Accessed 31 Mar 2009Google Scholar
  72. 72.
    Clark MB (1982) Lithium-iron disulfide cells. Academic, New YorkGoogle Scholar
  73. 73.
    Shao-Horn Y, Osmialowski S, Horn QC (2002) Nano-FeS2 for commercial Li/FeS2 primary batteries. J Electrochem Soc 149:A1199–A1502Google Scholar
  74. 74.
    West K, Crespi AM (1995) Lithium insertion into silver vanadium oxide Ag2V4O11. J Power Sourc 54:334–337CrossRefGoogle Scholar
  75. 75.
    Crespi AM (1993) Silver vanadium oxide cathode material and method of preparation. US Patent 5,221,453, Accessed 27 Sept 1990Google Scholar
  76. 76.
    Crespi A, Schmildt C, Norton J, Chen K, Skarstad P (2001) Modeling and characterization of the resistance of lithium/SVO for implantable cardioverter-defibrillators. J Electrochem Soc 148:A30–A37CrossRefGoogle Scholar
  77. 77.
    Chung JS, Sohn HJ (2002) Electrochemical behaviours of CuS as a cathode material for lithium secondary batteries. J Power Sourc 108:226–231CrossRefGoogle Scholar
  78. 78.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRefGoogle Scholar
  79. 79.
    Rao BML, Francis RW, Christopher HA (1977) Lithium-aluminum electrode. J Electrochem Soc 124:1490–1492CrossRefGoogle Scholar
  80. 80.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417CrossRefGoogle Scholar
  81. 81.
    Ota H (2004) Characterization of lithium electrodes in lithium imides/ethylene carbonate and cyclic ether electrolytes. Surface chemistry. J Electrochem Soc 151:A437–A446CrossRefGoogle Scholar
  82. 82.
    Von Sacken U, Nodwell E, Sundher A, Dahn JR (1990) Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J Power Sourc 54:240–245CrossRefGoogle Scholar
  83. 83.
    Whittingham MS (1978) The electrochemical characteristics of VSe2 in lithium cells. Mater Res Bul 13:959–965CrossRefGoogle Scholar
  84. 84.
    Akridge JR, Vourlis H (1988) Performance of Li/TiS2 solid state batteries using phosphorous chacogenide network former glasses as solid electrolyte. Solid State Ionics 28–30:841–846CrossRefGoogle Scholar
  85. 85.
    Py MA, Haering RR (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys 61:76–84CrossRefGoogle Scholar
  86. 86.
    Trumbore FA (1989) Niobium triselenide: a unique rechargeable positive electrode material. J Power Sourc 26:65–75CrossRefGoogle Scholar
  87. 87.
    Schöllhorn R, Kuhlmann R, Besenhard JO (1976) Topotactic redox reactions and ion exchange of layered MoO3 bronzes. Mater Res Bull 11:83–90CrossRefGoogle Scholar
  88. 88.
    Besenhard JO, Schöllhorn R (1976) The discharge reaction mechanism of the MoO3 electrode in organic electrolytes. J Power Sourc 1:267–276CrossRefGoogle Scholar
  89. 89.
    Murphy DW, Christian PA, DiSalvo FJ, Waszczak JV (1979) Lithium incorporation by vanadium pentoxide. Inorg Chem 18:2800–2803CrossRefGoogle Scholar
  90. 90.
    Labat J, Cocciantelli JM (1990) Rechargeable electrochemical cell having a cathode based on vanadium oxide. US Patent No. 5,219,677, Accessed 11 Dec 1990Google Scholar
  91. 91.
    Margalit N, Walk CR (1995) Lithium ion battery with lithium vanadium pentoxide positive electrode. World Patent WO 1996006465 A1, Accessed 18 Aug 1995Google Scholar
  92. 92.
    Desilvestro J, Haas O (1990) Metal oxide cathode materials for electrochemical energy storage. J Electrochem Soc 137:5C–22CCrossRefGoogle Scholar
  93. 93.
    Zaghib K, Mauger A, Groult H, Goodenough JB, Julien CM (2013) Advanced electrodes for high power Li-ion batteries. Materials 6:1028–1049CrossRefGoogle Scholar
  94. 94.
    Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154CrossRefGoogle Scholar
  95. 95.
    Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium rechargeable batteries: status and trends. J Power Sourc 232:357–369CrossRefGoogle Scholar
  96. 96.
    Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sourc 196:3949–3954CrossRefGoogle Scholar
  97. 97.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mat 22:587–603CrossRefGoogle Scholar
  98. 98.
    Peled E (1979) The electrochemical behaviour of alkali and alkaline earth metals in nonaqueous battery systems. The solid electrolyte interphase model. J Electrochem Soc 126:2047–2051CrossRefGoogle Scholar
  99. 99.
    Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331CrossRefGoogle Scholar
  100. 100.
    Ferg E, Gummow RJ, Dekock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141:L147–L150CrossRefGoogle Scholar
  101. 101.
    Peramunage D, Abraham KM (1998) Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells. J Electrochem Soc 145:2609–2615CrossRefGoogle Scholar
  102. 102.
    Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sourc 81:902–905CrossRefGoogle Scholar
  103. 103.
    Ohzuku T, Yamato R, Kawai T, Ariyoshi K (2008) Steady-state polarization measurements of lithium insertion electrodes for high-power lithium-ion batteries. J Solid State Electrochem 128:979–985CrossRefGoogle Scholar
  104. 104.
    Ariyoshi K, Ohzuku T (2007) Conceptual design for 12 V “lead-free” accumulators for automobile and stationary applications. J Power Sourc 174:1258–1262CrossRefGoogle Scholar
  105. 105.
    Lu W, Belharouak I, Liu J, Amine K (2007) Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell. J Power Sourc 174:673–677CrossRefGoogle Scholar
  106. 106.
    Belharouak I, Sun YK, Lu W, Amine K (2007) On the safety of the Li4Ti5O12 ∕LiMn2O4 lithium-ion battery system batteries and energy storage. J Electrochem Soc 154:A1083–A1087CrossRefGoogle Scholar
  107. 107.
    Du Pasquier A, Huang CC, Spitler T (2009) Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J Power Sourc 186:508–514CrossRefGoogle Scholar
  108. 108.
    Amine K, Belharouak I, Chen ZH, Tran T, Yumoto H, Ota N, Myung ST, Sun YK (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057CrossRefGoogle Scholar
  109. 109.
    Reale P, Panero S, Scrosati B, Garche J, Wohlfahrt-Mehrens M, Wachtler M (2004) A safe, low-cost, and sustainable lithium-ion polymer battery. J Electrochem Soc 151:A2138–A2142CrossRefGoogle Scholar
  110. 110.
    Reale P, Fernicola A, Scrosati B (2009) Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sourc 194:182–189CrossRefGoogle Scholar
  111. 111.
    Sun LQ, Cui RH, Jalbout AF, Li MJ, Pan XM, Wang RS, Xie HM (2009) LiFePO4 as an optimum power cell material. J Power Sourc 189:522–526CrossRefGoogle Scholar
  112. 112.
    Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM (2009) Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries and energy storage. J Electrochem Soc 156:A1041–A1046CrossRefGoogle Scholar
  113. 113.
    Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sourc 216:192–200CrossRefGoogle Scholar
  114. 114.
    Ohzuku T, Ariyoshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 1270–1271Google Scholar
  115. 115.
    Ariyoshi K, Yamamoto S, Ohzuku T (2003) Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4. J Power Sourc 119:959–963CrossRefGoogle Scholar
  116. 116.
    Wu HM, Belharouak I, Deng H, Abouimrane A, Sun YK, Amine K (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life batteries and energy storage. J Electrochem Soc 156:A1047–A1050CrossRefGoogle Scholar
  117. 117.
    Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun 2:516CrossRefGoogle Scholar
  118. 118.
    Sawai K, Yamato R, Ohzuku T (2006) Impedance measurements on lithium-ion battery consisting of Li[Li1/3Ti5/3]O4 and Li(Co1/2Ni1/2)O2. Electrochim Acta 51:1651–1655CrossRefGoogle Scholar
  119. 119.
    Lu W, Liu J, Sun YK, Amine K (2007) Electrochemical performance of Li4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cell for high power applications. J Power Sourc 167:212–216CrossRefGoogle Scholar
  120. 120.
    Reddy MV, Suba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  121. 121.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462CrossRefGoogle Scholar
  122. 122.
    Daniel C (2008) Materials and processing for lithium-ion batteries. JOM 60:43–48CrossRefGoogle Scholar
  123. 123.
    Armand MB (1983) Polymer solid electrolytes – an overview. Solid State Ionics 9–10:745–754CrossRefGoogle Scholar
  124. 124.
    Gauthier M, Fauteux D, Vassort G, Belanger A, Duval M, Ricoux P, Gabano JP, Muller D, Rigaud P, Armand MB, Deroo D (1985) Assessment of polymer-electrolyte batteries for EV and ambient temperature applications. J Electrochem Soc 132:1333–1340CrossRefGoogle Scholar
  125. 125.
    Armand M (1985) Ionically conductive polymers. In: Sequeira CAC, Hooper A (eds) Solid state batteries. Marinus Nijhoff, Dordrecht, pp 63–72CrossRefGoogle Scholar
  126. 126.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sourc 231:153–162CrossRefGoogle Scholar
  127. 127.
    Jeong SS, Lim Y, Choi YJ, Cho GB, Kim KW, Ahn HJ, Cho KK (2007) Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J Power Sourc 174:745–750CrossRefGoogle Scholar
  128. 128.
    Song MK, Zhang Y, Cairns EJ (2013) A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett 13:5891–5899CrossRefGoogle Scholar
  129. 129.
    Manthiram A, Fu Y, Su YS (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134CrossRefGoogle Scholar
  130. 130.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506CrossRefGoogle Scholar
  131. 131.
    Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467CrossRefGoogle Scholar
  132. 132.
    Choi YJ, Ahn JH, Ahn HJ (2008) Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J Power Sourc 184:548–552CrossRefGoogle Scholar
  133. 133.
    Jaffe S, Talon C, Ishimori K, Bigliani R, Tong F, Nicholson R (2001) Business strategy: lithium ion manufacturing global buildout, supply and demand forecasts. http://www.idc.com/getdoc.jsp?containerId=EI232266. Accessed Dec 2011
  134. 134.
    Battery Association of Japan (2014) Total battery production statistics. http://www.baj.or.jp/e/statistics/01.html
  135. 135.
    Chemetall (2009) Lithium applications and availability: Chemetall statement to investors, July 28. http://www.chemetall.com/fileadmin/files_chemetall/Downloads/Chemetall_Li-Supply_2009_July.pdf. Accessed 4 Jan 2009
  136. 136.
    Hsiao E, Richter C (2008) Electric vehicles special report – Lithium Nirvana – Powering the car of tomorrow. In: CLSA Asia-Pacific Markets. http://www.clsa.com/assets/files/reports/CLAS-Jp-ElectricVehicles20080530.pdf. Accessed 2 Dec 2009
  137. 137.
    Jongerden MR, Haverkort BR (2008) Which battery model to use? In: Dingle NJ, Haeder U, Argent-Katwala A (eds) UKPEW 2008. Imperial College, London, pp 76–88, http://doc.utwente.nl/64866/1/battery-model.pdf Google Scholar
  138. 138.
    Jongerden MR, Haverkort BR (2008) Battery modelling. Tech report TR-CIT-08-01. UTwente, Enschede. http://eprints.eemcs.utwente.nl/11645/01/BatteryRep4.pdf. Accessed 29 Jan 2008
  139. 139.
    Hafsaoui J, Scordia J, Sellier F, Aubret P (2012) Development of an electrochemical battery model and its parameters identification tool. Int J Automobile Eng 3:27–33Google Scholar
  140. 140.
    Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526–1533CrossRefGoogle Scholar
  141. 141.
    Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10CrossRefGoogle Scholar
  142. 142.
    Fuller TF, Doyle M, Newman J (1994) Relaxation phenomena in lithium-ion-insertion cells. J Electrochem Soc 141:982–990CrossRefGoogle Scholar
  143. 143.
    Hageman SC (1993) Simple PSpice models let you simulate common battery types. Electronic Design News 38:117–129Google Scholar
  144. 144.
    Manwell J, McGowan J (1993) Lead acid battery storage model for hybrid energy systems. Sol Energ 50:399–405CrossRefGoogle Scholar
  145. 145.
    Chiasserini C, Rao R (2001) Energy efficient battery management. IEEE J Selected Areas Commun 19:1235–1245CrossRefGoogle Scholar
  146. 146.
    Rao V, Singhal G, Kumar A, Navet N (2005) Battery model for embedded systems. In; Proceedings of the 18th international conference on VLSI design held jointly with 4th international conference on embedded systems design (VLSID’05) IEEE Computer Society, pp 105–110Google Scholar
  147. 147.
    Tremblay O, Dessaint LA, Dekkiche AI (2007) A generic battery model for the dynamic simulation of hybrid electric vehicles. In: Proceedings of the vehicle power and propulsion conference. Arlington, TX, IEEE, pp 284–289Google Scholar
  148. 148.
    Moore S, Merhdad E (1996) Texas A&M, an empirically based electrosource horizon lead-acid battery model, Strategies in Electric and Hybrid Vehicle Design, SAE J. SP-1156, paper 960448, pp 135–138Google Scholar
  149. 149.
    Unnewehr LE, Nasar SA (1982) Electric vehicle technology. Wiley, New York, pp 81–91Google Scholar
  150. 150.
    Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ (2001) Aging mechanism in Li ion cells and calendar life predictions. J Power Sourc 97–98:13–21CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Julien
    • 1
  • Alain Mauger
    • 2
  • Ashok Vijh
    • 3
  • Karim Zaghib
    • 3
  1. 1.Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX) UMR 8234Sorbonne Universités UPMC Univ. Paris 06ParisFrance
  2. 2.Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Muséum d’Histoire Naturelle, Institut de Recherche pour le Développement IRD UMR 7590 et 206Sorbonne Universités, UPMC Univ Paris 06ParisFrance
  3. 3.Institut de Recherches d’Hydro-Québec (IREQ)QuebecCanada

Personalised recommendations