Oxidative Stress and DNA Damage Association with Carcinogenesis: A Truth or a Myth?

  • Vasiliki I. Hatzi
  • Danae A. Laskaratou
  • Ifigeneia V. Mavragani
  • Gabriel E. Pantelias
  • Georgia I. Terzoudi
  • Alexandros G. Georgakilas
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Reactive oxygen and nitrogen species (ROS/RNS) possess the capacity to damage DNA (both nuclear and mitochondrial) and other cellular macromolecules, resulting in various outcomes for the cell such as loss of function and stability, mutation, senescence (mainly due to telomeric shortening) and/or cell death, unless removed rapidly by antioxidative mechanisms evolved by the cell. Over the last decade, great emphasis has been put on the potential role(s) and association of oxidative stress with ageing and certain diseases including cancer, and the idea of using several oxidatively generated DNA lesions as novel biomarkers of oxidative stress, chronic inflammation, and susceptibility to cancer gains more ground. The present chapter focuses on the description of genotoxic forms of oxygen, types of resulting oxidative DNA damage and their usage as potential biomarkers in several diseases including cancer.


Reactive oxygen species ROS DNA damage Oxidative stress Carcinogenesis 



This work was supported by funds provided to Dr. Georgakilas by an EU grant MC-CIG-303514, European Union (European Social Fund –ESF), COST Action CM1201 ‘Biomimetic Radical Chemistry’and the European Union (European Social Fund –ESF) and Greek national funds through the Operational Program “Education and Lifelong Learnin” of the National Strategic Reference Framework (NSRF)-Research Funding Program: THALES Grant number MIS 379346.

Drs Hatzi, Pantelias and Terzoudi have been supported by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALIS - UOA- ‘Analysis of genotoxic resistance mechanisms of breast cancer stem cells: applications in prognosis, diagnosis & treatment’, MIS: 377177. Ms. Laskaratou has been supported by the project “Scholarships programmes by the State Scholarships Foundation (SSF/IKY)” in the framework of the Operational Programme “Education and Lifelong Learning” resources, European Social Fund (ESF) of the National Strategic Reference Framework (2007–2013).


  1. 1.
    Grishko VI, Driggers WJ et al (1997) Repair of oxidative damage in nuclear DNA sequences with different transcriptional activities. Mutat Res 384(2):73–80PubMedCrossRefGoogle Scholar
  2. 2.
    Poulsen HE, Prieme H et al (1998) Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 7(1):9–16PubMedGoogle Scholar
  3. 3.
    Kryston TB, Georgiev AB et al (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711(1–2):193–201PubMedCrossRefGoogle Scholar
  4. 4.
    De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185PubMedCrossRefGoogle Scholar
  5. 5.
    Altieri F, Grillo C et al (2008) DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 10(5):891–937PubMedCrossRefGoogle Scholar
  6. 6.
    Cadet J, Douki T et al (2010) Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 49(1):9–21PubMedCrossRefGoogle Scholar
  7. 7.
    Sedelnikova OA, Redon CE et al (2010) Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 704(1–3):152–159PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Scott TL, Rangaswamy S et al (2013) Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair. Signal, Antioxid RedoxGoogle Scholar
  9. 9.
    Lim CH, Dedon PC et al (2008) Kinetic analysis of intracellular concentrations of reactive nitrogen species. Chem Res Toxicol 21(11):2134–2147PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Tiwari BS, Belenghi B et al (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128(4):1271–1281PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Nohl H, Kozlov AV et al (2003) Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans 31(Pt 6):1308–1311PubMedCrossRefGoogle Scholar
  12. 12.
    Pelicano H, Feng L et al (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278(39):37832–37839PubMedCrossRefGoogle Scholar
  13. 13.
    Werz O, Szellas D et al (2000) Reactive oxygen species released from granulocytes stimulate 5-lipoxygenase activity in a B-lymphocytic cell line. Eur J Biochem 267(5):1263–1269PubMedCrossRefGoogle Scholar
  14. 14.
    Pontiki E, Kontogiorgis C et al (2013) New lipoxygenase inhibitors of reactive oxygen species production in cellular models of amyloid (A2) toxicities. J Alzheimers Dis 34(1):215–230PubMedGoogle Scholar
  15. 15.
    Ali S, Jain SK et al (1996) Paraquat induced DNA damage by reactive oxygen species. Biochem Mol Biol Int 39(1):63–67PubMedGoogle Scholar
  16. 16.
    Kumar BN, Rajput S et al (2013) Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling. BMC Cancer 13:273PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435PubMedCrossRefGoogle Scholar
  18. 18.
    Mello Filho AC, Meneghini R (1984) In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim Biophys Acta 781(1–2):56–63PubMedCrossRefGoogle Scholar
  19. 19.
    Newcomb TG, Loeb LA (1998) Oxidative DNA damage and mutagenesis. Humana Press Inc, DNA damage and repairCrossRefGoogle Scholar
  20. 20.
    Moller P, Wallin H (1998) Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat Res 410(3):271–290PubMedCrossRefGoogle Scholar
  21. 21.
    Friedberg EC (1995) Out of the shadows and into the light: the emergence of DNA repair. Trends Biochem Sci 20(10):381PubMedCrossRefGoogle Scholar
  22. 22.
    Friedberg EC (2003) DNA damage and repair. Nature 421(6921):436–440PubMedCrossRefGoogle Scholar
  23. 23.
    Chaudhuri S, Sengupta S et al (1992) Effect of hydrogen peroxide on mammalian chromatin: electron microscopic studies. J Electron Microsc (Tokyo) 41(4):261–263Google Scholar
  24. 24.
    Matroule JY, Piette J (2000) Photosensitization and redox signaling. Antioxid Redox Signal 2(2):301–315PubMedCrossRefGoogle Scholar
  25. 25.
    Friedrich RE, Hieke N et al (2004) DNA-flow cytometry, DNA-image cytometry and proliferation index (MIB-5) in irradiated rat salivary glands and salivary gland tumors. Vivo 18(2):213–222Google Scholar
  26. 26.
    Pflaum M, Kielbassa C et al (1998) Oxidative DNA damage induced by visible light in mammalian cells: extent, inhibition by antioxidants and genotoxic effects. Mutat Res 408(2):137–146PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang X, Rosenstein BS et al (1997) Induction of 8-oxo-7,8-dihydro-2′-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochem Photobiol 65(1):119–124PubMedCrossRefGoogle Scholar
  28. 28.
    Wei H, Cai Q et al (1997) Singlet oxygen involvement in ultraviolet (254 nm) radiation-induced formation of 8-hydroxy-deoxyguanosine in DNA. Free Radic Biol Med 23(1):148–154PubMedCrossRefGoogle Scholar
  29. 29.
    Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364(6435):362PubMedGoogle Scholar
  30. 30.
    Tokunaga I, Kubo S et al (1997) Determination of 8-hydroxy-deoxyguanosine formation in rat organs: assessment of paraquat-evoked oxidative DNA damage. Biochem Mol Biol Int 43(1):73–77PubMedGoogle Scholar
  31. 31.
    Sahu SC, Eppley RM et al (1998) Peroxidation of membrane lipids and oxidative DNA damage by fumonisin B1 in isolated rat liver nuclei. Cancer Lett 125(1–2):117–121PubMedCrossRefGoogle Scholar
  32. 32.
    Duell T, Lengfelder E et al (1995) Effect of activated oxygen species in human lymphocytes. Mutat Res 336(1):29–38PubMedCrossRefGoogle Scholar
  33. 33.
    Salazar JJ, Van Houten B (1997) Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts. Mutat Res 385(2):139–149PubMedCrossRefGoogle Scholar
  34. 34.
    Xu X, Wang Y et al (2013) The significance of the alteration of 8-OHdG in serous ovarian carcinoma. J Ovarian Res 6(1):74PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Morin B, Davies MJ et al (1998) The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage. Biochem J 330(Pt 3):1059–1067PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Toyokuni S, Tanaka T et al (1997) Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76(3):365–374PubMedGoogle Scholar
  37. 37.
    Helbock HJ, Beckman KB et al (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A 95(1):288–293PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Santella RM (1997) DNA damage as an intermediate biomarker in intervention studies. Proc Soc Exp Biol Med 216(2):166–171PubMedCrossRefGoogle Scholar
  39. 39.
    Podmore K, Farmer PB et al (1997) 32P-postlabelling approaches for the detection of 8-oxo-2′-deoxyguanosine-3′-monophosphate in DNA. Mutat Res 378(1–2):139–149PubMedCrossRefGoogle Scholar
  40. 40.
    Cadet J, Ravanat JL et al (2012) Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett 327(1–2):5–15PubMedCrossRefGoogle Scholar
  41. 41.
    Yang G, Nowsheen S et al (2013) Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol Ther 139(3):392–404PubMedCrossRefGoogle Scholar
  42. 42.
    Chatgilialoglu C, Ferreri C et al (2011) Purine 5′,8-cyclonucleoside lesions: chemistry and biology. Chem Soc Rev 40(3):1368–1382PubMedCrossRefGoogle Scholar
  43. 43.
    Kim KB, Lee BM (1997) Oxidative stress to DNA, protein, and antioxidant enzymes (superoxide dismutase and catalase) in rats treated with benzo(a)pyrene. Cancer Lett 113(1–2):205–212PubMedCrossRefGoogle Scholar
  44. 44.
    Kasprzak KS, Jaruga P et al (1997) Oxidative DNA base damage and its repair in kidneys and livers of nickel(II)-treated male F344 rats. Carcinogenesis 18(2):271–277PubMedCrossRefGoogle Scholar
  45. 45.
    Sugden KD, Wetterhahn KE (1997) Direct and hydrogen peroxide-induced chromium(V) oxidation of deoxyribose in single-stranded and double-stranded calf thymus DNA. Chem Res Toxicol 10(12):1397–1406PubMedCrossRefGoogle Scholar
  46. 46.
    Ichinose T, Yajima Y et al (1997) Lung carcinogenesis and formation of 8-hydroxy-deoxyguanosine in mice by diesel exhaust particles. Carcinogenesis 18(1):185–192PubMedCrossRefGoogle Scholar
  47. 47.
    Lodovici M, Casalini C et al (1997) Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology 117(1):55–60PubMedCrossRefGoogle Scholar
  48. 48.
    Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387(3):147–163PubMedCrossRefGoogle Scholar
  49. 49.
    Howard DJ, Ota RB et al (1998) Environmental tobacco smoke in the workplace induces oxidative stress in employees, including increased production of 8-hydroxy-2′-deoxyguanosine. Cancer Epidemiol Biomarkers Prev 7(2):141–146PubMedGoogle Scholar
  50. 50.
    Savio M, Stivala LA et al (1998) Involvement of the proliferating cell nuclear antigen (PCNA) in DNA repair induced by alkylating agents and oxidative damage in human fibroblasts. Carcinogenesis 19(4):591–596PubMedCrossRefGoogle Scholar
  51. 51.
    Zastawny TH, Czerwinska B et al (1997) Radiation-induced oxidative DNA base damage and its repair in nuclear matrix-associated DNA and in bulk DNA in hepatic chromatin of rat upon whole-body gamma-irradiation. Free Radic Biol Med 22(1–2):101–107PubMedCrossRefGoogle Scholar
  52. 52.
    Randerath E, Zhou GD et al (1997) Organ-specific oxidative DNA damage associated with normal birth in rats. Carcinogenesis 18(4):859–866PubMedCrossRefGoogle Scholar
  53. 53.
    Randerath K, Zhou GD et al (1997) Comparative 32P-postlabeling analysis of exogenous and endogenous DNA adducts in mouse skin exposed to a wood-preserving waste extract, a complex mixture of polycyclic and polychlorinated chemicals. Environ Mol Mutagen 29(4):372–378PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang QM, Yonei S et al (1992) Multiple pathways for repair of oxidative DNA damages caused by X rays and hydrogen peroxide in Escherichia coli. Radiat Res 132(3):334–338PubMedCrossRefGoogle Scholar
  55. 55.
    Slupphaug G, Kavli B et al (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531(1–2):231–251PubMedCrossRefGoogle Scholar
  56. 56.
    Jenner A, England TG et al (1998) Measurement of oxidative DNA damage by gas chromatography-mass spectrometry: ethanethiol prevents artifactual generation of oxidized DNA bases. Biochem J 331(Pt 2):365–369PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Hong YS, Hong SW et al (2012) Bortezomib induces G2-M arrest in human colon cancer cells through ROS-inducible phosphorylation of ATM-CHK1. Int J Oncol 41(1):76–82PubMedGoogle Scholar
  58. 58.
    Pagano G, Korkina LG et al (1998) Congenital disorders sharing oxidative stress and cancer proneness as phenotypic hallmarks: prospects for joint research in pharmacology. Med Hypotheses 51(3):253–266PubMedCrossRefGoogle Scholar
  59. 59.
    Popp HD, Bohlander SK (2010) Genetic instability in inherited and sporadic leukemias. Genes Chromosomes Cancer 49(12):1071–1081PubMedCrossRefGoogle Scholar
  60. 60.
    Emerit I (1994) Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med 16(1):99–109PubMedCrossRefGoogle Scholar
  61. 61.
    Abdi S, Ali A (1999) Role of ROS modified human DNA in the pathogenesis and etiology of cancer. Cancer Lett 142(1):1–9PubMedCrossRefGoogle Scholar
  62. 62.
    Burhans WC, Weinberger M (2007) DNA replication stress, genome instability and aging. Nucleic Acids Res 35(22):7545–7556PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Minelli A, Bellezza I et al (2009) Oxidative stress-related aging: A role for prostate cancer? Biochim Biophys Acta 1795(2):83–91PubMedGoogle Scholar
  64. 64.
    Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38(3):357–366PubMedCrossRefGoogle Scholar
  65. 65.
    Barnham KJ, Masters CL et al (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214PubMedCrossRefGoogle Scholar
  66. 66.
    Pereira MD, Ksiazek K et al (2012) Oxidative stress in neurodegenerative diseases and ageing. Oxid Med Cell Longev 2012:796360PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Park MT, Kim MJ et al (2005) Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood 105(4):1724–1733PubMedCrossRefGoogle Scholar
  68. 68.
    Wason MS, Colon J et al (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 9(4):558–569PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Mates JM, Segura JA et al (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49(9):1328–1341PubMedCrossRefGoogle Scholar
  70. 70.
    Kubo N, Morita M et al (2013) Oxidative DNA damage in human esophageal cancer: clinicopathological analysis of 8-hydroxydeoxyguanosine and its repair enzyme. Esophagus, DisGoogle Scholar
  71. 71.
    Priolli DG, Canelloi TP et al (2013) Oxidative DNA damage and beta-catenin expression in colorectal cancer evolution. Int J Colorectal Dis 28(5):713–722PubMedCrossRefGoogle Scholar
  72. 72.
    Moktar A, Singh R et al (2011) Cigarette smoke condensate-induced oxidative DNA damage and its removal in human cervical cancer cells. Int J Oncol 39(4):941–947PubMedCentralPubMedGoogle Scholar
  73. 73.
    Miyake H, Hara I et al (2004) Oxidative DNA damage in patients with prostate cancer and its response to treatment. J Urol 171(4):1533–1536PubMedCrossRefGoogle Scholar
  74. 74.
    Wu JD, Lin DW et al (2009) Oxidative DNA damage in the prostate may predispose men to a higher risk of prostate cancer. Transl Oncol 2(1):39–45PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Kang DH (2002) Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 13(4):540–549PubMedCrossRefGoogle Scholar
  76. 76.
    Ruiz-Ramos R, Lopez-Carrillo L et al (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674(1–2):109–115PubMedCrossRefGoogle Scholar
  77. 77.
    Gackowski D, Kowalewski J et al (2005) Oxidative DNA damage and antioxidant vitamin level: comparison among lung cancer patients, healthy smokers and nonsmokers. Int J Cancer 114(1):153–156PubMedCrossRefGoogle Scholar
  78. 78.
    Bendesky A, Michel A et al (2006) DNA damage, oxidative mutagen sensitivity, and repair of oxidative DNA damage in nonmelanoma skin cancer patients. Environ Mol Mutagen 47(7):509–517PubMedCrossRefGoogle Scholar
  79. 79.
    Irie M, Miyata M et al (2005) Depression and possible cancer risk due to oxidative DNA damage. J Psychiatr Res 39(6):553–560PubMedCrossRefGoogle Scholar
  80. 80.
    Sipowicz MA, Chomarat P et al (1997) Increased oxidative DNA damage and hepatocyte overexpression of specific cytochrome P450 isoforms in hepatitis of mice infected with Helicobacter hepaticus. Am J Pathol 151(4):933–941PubMedCentralPubMedGoogle Scholar
  81. 81.
    Ding SZ, Minohara Y et al (2007) Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 75(8):4030–4039PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Domingo E (1997) Rapid evolution of viral RNA genomes. J Nutr 127(5 Suppl):958S–961SPubMedGoogle Scholar
  83. 83.
    Georgakilas AG, Mosley WG et al (2010) Viral-induced human carcinogenesis: an oxidative stress perspective. Mol Biosyst 6(7):1162–1172PubMedCrossRefGoogle Scholar
  84. 84.
    Halazonetis TD, Gorgoulis VG et al (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355PubMedCrossRefGoogle Scholar
  85. 85.
    Li R, Sonik A et al (2000) Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A 97(7):3236–3241PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Duesberg P (2005) Does aneuploidy or mutation start cancer? Science 307(5706):41PubMedCrossRefGoogle Scholar
  87. 87.
    Giaretti W, Pentenero M et al (2012) Chromosomal instability, aneuploidy and routine high-resolution DNA content analysis in oral cancer risk evaluation. Future Oncol 8(10):1257–1271PubMedCrossRefGoogle Scholar
  88. 88.
    Olinski R, Gackowski D et al (2003) Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development? Mutat Res 531(1–2):177–190PubMedCrossRefGoogle Scholar
  89. 89.
    Loft S, Moller P (2006) Oxidative DNA damage and human cancer: need for cohort studies. Antioxid Redox Signal 8(5–6):1021–1031PubMedCrossRefGoogle Scholar
  90. 90.
    Nowsheen S, Aziz K et al (2012) The interplay between inflammation and oxidative stress in carcinogenesis. Curr Mol Med 12(6):672–680PubMedCrossRefGoogle Scholar
  91. 91.
    Curtis C, Thorngren D et al (2010) Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer 10(1):9PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Parkes TL, Elia AJ et al (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19(2):171–174PubMedCrossRefGoogle Scholar
  93. 93.
    Saitoh M, Nishitoh H et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Tell G, Quadrifoglio F et al (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11(3):601–619PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1699(1–2):35–44CrossRefGoogle Scholar
  96. 96.
    Atukeren P, Yavuz B et al (2010) Variations in systemic biomarkers of oxidative/nitrosative stress and DNA damage before and during the consequent two cycles of chemotherapy in breast cancer patients. Clin Chem Lab Med 48(10):1487–1495PubMedCrossRefGoogle Scholar
  97. 97.
    Li D, Zhang W et al (2001) Oxidative DNA damage and 8-hydroxy-2-deoxyguanosine DNA glycosylase/apurinic lyase in human breast cancer. Mol Carcinog 31(4):214–223PubMedCrossRefGoogle Scholar
  98. 98.
    Le Prell CG, Hughes LF et al (2007) Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radical Biology and Medicine 42(9):1454–1463PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Obtułowicz T, Swoboda M et al (2010) Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients. Mutagenesis 25(5):463–471PubMedCrossRefGoogle Scholar
  100. 100.
    Giglia-Mari G, Zotter A et al (2011) DNA damage response. Cold Spring Harb Perspect Biol 3(1)Google Scholar
  101. 101.
    Oka K, Tanaka T et al (2010) DNA damage signaling is activated during cancer progression in human colorectal carcinoma. Cancer Biol Ther 9(3):245–251CrossRefGoogle Scholar
  102. 102.
    Sato T, Takeda H et al (2010) Increased plasma levels of 8-hydroxydeoxyguanosine are associated with development of colorectal tumors. J Clin Biochem Nutr 47(1):59–63PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Gackowski D, Speina E et al (2003) Products of oxidative DNA damage and repair as possible biomarkers of susceptibility to lung cancer. Cancer Res 63(16):4899–4902PubMedGoogle Scholar
  104. 104.
    Murtas D, Piras F et al (2010) Nuclear 8-hydroxy-2′-deoxyguanosine as survival biomarker in patients with cutaneous melanoma. Oncol Rep 23(2):329–335PubMedGoogle Scholar
  105. 105.
    Huang Y-J, Zhang B-B et al (2011) Nitrative and oxidative DNA damage as potential survival biomarkers for nasopharyngeal carcinoma. Med Oncol 28(1):377–384PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang J, Dhakal IB et al (2010) Polymorphisms in hOGG1 and XRCC1 and risk of prostate cancer: effects modified by plasma antioxidants. Urology 75(4):779–785PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Lunn RM, Langlois RG et al (1999) XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 59(11):2557–2561PubMedGoogle Scholar
  108. 108.
    Duell EJ, Wiencke JK et al (2000) Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 21(5):965–971PubMedCrossRefGoogle Scholar
  109. 109.
    Karihtala P, Soini Y et al (2009) DNA adduct 8-hydroxydeoxyguanosine, a novel putative marker of prognostic significance in ovarian carcinoma. Int J Gynecol Cancer 19(6):1047–1051PubMedCrossRefGoogle Scholar
  110. 110.
    Nowsheen S, Wukovich RL et al (2009) Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 674(1–2):131–136CrossRefGoogle Scholar
  111. 111.
    Patchsung M, Boonla C et al (2012) Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential. PLoS One 7(5), e37009PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Zannoni GF, Faraglia B et al (2006) Expression of the CDK inhibitor p27kip1 and oxidative DNA damage in non-neoplastic and neoplastic vulvar epithelial lesions. Mod Pathol 19(4):504–513PubMedCrossRefGoogle Scholar
  113. 113.
    Shen J, Deininger P et al (2007) 8-Hydroxy-2′-deoxyguanosine (8-OH-dG) as a potential survival biomarker in patients with nonsmall-cell lung cancer. Cancer 109(3):574–580PubMedCrossRefGoogle Scholar
  114. 114.
    Roszkowski K, Jozwicki W et al (2011) Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Med Sci Monit 17(6):CR329–CR333PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Collado R, Oliver I et al (2012) Early ROS-mediated DNA damage and oxidative stress biomarkers in Monoclonal B Lymphocytosis. Cancer Lett 317(2):144–149PubMedCrossRefGoogle Scholar
  116. 116.
    Crohns M, Saarelainen S et al (2009) Impact of radiotherapy and chemotherapy on biomarkers of oxidative DNA damage in lung cancer patients. Clin Biochem 42(10–11):1082–1090PubMedCrossRefGoogle Scholar
  117. 117.
    Medeiros MH (2009) Exocyclic DNA adducts as biomarkers of lipid oxidation and predictors of disease. Challenges in developing sensitive and specific methods for clinical studies. Chem Res Toxicol 22(3):419–425PubMedCrossRefGoogle Scholar
  118. 118.
    Bartsch H, Arab K et al (2011) Biomarkers for hazard identification in humans. Environ Health 10(Suppl 1):S11PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Winczura A, Zdzalik D et al (2012) Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 46(4):442–459PubMedCrossRefGoogle Scholar
  120. 120.
    Chatgilialoglu C, Ferreri C et al (2013) Free radicals in chemical biology: from chemical behavior to biomarker development. J Vis Exp 74Google Scholar
  121. 121.
    Liu Y, Zha L et al (2014) Correlation between superoxide dismutase 1 and 2 polymorphisms and susceptibility to oral squamous cell carcinoma. Exp Ther Med 7(1):171–178PubMedCentralPubMedGoogle Scholar
  122. 122.
    Kosova F, Temeltas G et al (2013) Possible relations between oxidative damage and apoptosis in benign prostate hyperplasia and prostate cancer patients. Biol, TumourGoogle Scholar
  123. 123.
    Farinati F, Cardin R et al (2008) Oxidative DNA damage in gastric cancer: CagA status and OGG1 gene polymorphism. Int J Cancer 123(1):51–55PubMedCrossRefGoogle Scholar
  124. 124.
    Farinati F, Cardin R et al (2008) Helicobacter pylori, inflammation, oxidative damage and gastric cancer: a morphological, biological and molecular pathway. Eur J Cancer Prev 17(3):195–200PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vasiliki I. Hatzi
    • 1
  • Danae A. Laskaratou
    • 2
  • Ifigeneia V. Mavragani
    • 2
  • Gabriel E. Pantelias
    • 1
  • Georgia I. Terzoudi
    • 1
  • Alexandros G. Georgakilas
    • 2
  1. 1.Radiation Protection Laboratory, Health Physics, Radiobiology and CytogeneticsInstitute of Nuclear & Radiological Science & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”AthensGreece
  2. 2.Physics Department, School of Applied Mathematical and Physical SciencesNational Technical University of Athens (NTUA)AthensGreece

Personalised recommendations