On the Existence of Weak Optimal Controls in the Coefficients for a Degenerate Anisotropic p-Laplacian

  • Olha P. KupenkoEmail author
  • Günter Leugering
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 30)


We consider an optimal control problem for nonlinear degenerate elliptic problems involving an anisotropic p-Laplacian and Dirichlet boundary conditions. We take the matrix-valued coefficients A(x) of such system as a control in \(L^{p/2}(\varOmega ;\mathbb {R}^{\frac{N(N+1)}{2}})\). One of the important features of the admissible controls is the fact that eigenvalues of the coefficient matrices may vanish in \(\varOmega \). Equations of this type may exhibit the Lavrentiev phenomenon and nonuniqueness of weak solutions. Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of this optimal control problem in the class of weak solutions.



Research funded by the DFG-cluster CE315: Engineering of Advanced Materials


  1. 1.
    Alessandrini, G., Sigalotti, M.: Geometric properties of solutions to the anistropic \(p\)-Laplace equation in dimension two. Annal. Acad. Scient. Fen. Mat. 21, 249–266 (2001)MathSciNetGoogle Scholar
  2. 2.
    Boccardo, L., Gallouët, T., Marcellini, P.: Anisotropic equations in \(L^1\). Differ. Integral Equ. 9, 209–212 (1996)zbMATHGoogle Scholar
  3. 3.
    Bouchitte, G., Buttazzo, G.: Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3, 139–168 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Buttazzo, G., Kogut, P.I.: Weak optimal controls in coefficients for linear elliptic problems. Revista Matematica Complutense (2010). doi: 10.1007/s13163-010-0030-y Google Scholar
  5. 5.
    Buttazzo, G., Varchon, N.: On the optimal reinforcement of an elastic membrane. Riv. Mat. Univ. Parma. 7(4), 115–125 (2005)MathSciNetGoogle Scholar
  6. 6.
    Caldiroli, P., Musina, R.: On a variational degenerate elliptic problem. Nonlinear Differ. Equ. Appl. 7, 187–199 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Calvo-Jurado, C., Casado-Díaz, J.: Optimization by the homogenization method for nonlinear elliptic Dirichlet problems. Mediterr. J. Math. 4, 53–63 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chabrowski, J.: Degenerate elliptic equation involving a subcritical Sobolev exponent. Portugal Math. 53, 167–177 (1996)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Chiadò Piat, V., Serra Cassano, F.: Some remarks about the density of smooth functions in weighted Sobolev spaces. J. Convex Anal. 2(1), 135–142 (1994)Google Scholar
  10. 10.
    Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Berlin (1985)Google Scholar
  11. 11.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)zbMATHCrossRefGoogle Scholar
  12. 12.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 1(51), 3–33 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kenig, C.E., Salo, M., Uhlmann, G.: Inverse problems for the anisotropic Maxwell equations. Duke Math. J. 2(157), 369–419 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kogut, P.I., Leugering, G.: Matrix-valued L1-optimal control in the coefficients of linear elliptic problems. ZAA (Zeitschrift für Analysis und ihre Anwendungen) 4(32), 433–456 (2013)Google Scholar
  15. 15.
    Kogut, P.I., Leugering, G.: Optimal \(L^1\)-Control in Coefficients for Dirichlet Elliptic Problems: \(H\)-Optimal Solutions, Zeitschrift für Analysis und ihre Anwendungen (2011)Google Scholar
  16. 16.
    Kogut, P.I., Leugering, G.: Optimal \(L^1\)-Control in Coefficients for Dirichlet Elliptic Problems: \(W\)-Optimal Solutions. J. Optim. Theory Appl. 2(150), 205–232 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kupenko, O.P., Manzo, R.: On an optimal \(L^1\)-control problem in coefficients for linear elliptic variational inequality. Abstr. Appl. Anal. 1–13 (2013), Article ID 821964, doi: 10.1155/2013/821964
  18. 18.
    Leonhardt, U.: Optical Conformal Mapping, Science 312 1777–1780 (2006) (23 June, 2006)Google Scholar
  19. 19.
    Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)CrossRefGoogle Scholar
  20. 20.
    Murat, F.: Un contre-exemple pour le prolème de contrôle dans les coefficients, C.R.A.S. Paris, Sér. A, 273, 708–711 (1971)Google Scholar
  21. 21.
    Murthy, M.K.V., Stampacchia, V.: Boundary problems for some degenerate elliptic operators. Ann. Mat. Pura e Appl. 4(5), 1–122 (1968)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pastukhova, S.E.: Degenerate equations of monotone type: Lavrentév phenomenon and attainability problems. Sb.: Math. 10(198), 1465–1494 (2007)MathSciNetGoogle Scholar
  23. 23.
    Pendry, J.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 8, 3966–3969 (2000)CrossRefGoogle Scholar
  24. 24.
    Uhlmann G. (ed.): Inside out: Inverse problems and applications, Reprint of the 2003 hardback ed. (English) Mathematical Sciences Research Institute Publications 47. Cambridge: Cambridge University Press (ISBN 978-0-521-16874-8/pbk), 400 p. (2011)Google Scholar
  25. 25.
    Zhikov, V.V.: Weighted Sobolev spaces. Sb.: Math. 8(189), 27–58 (1998)MathSciNetGoogle Scholar
  26. 26.
    Zhikov, V.V.: On an extension of the method of two-scale convergence and its applications. Sb.: Math. 7(191), 973–1014 (2000)MathSciNetGoogle Scholar
  27. 27.
    Zhikov, V.V.: On two-scale convergence. J. Math. Sci. 3(120), 1328–1352 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhikov, V.V., Pastukhova, S.E.: Homogenization of degenerate elliptic equations. Sib. Math. J. 1(49), 80–101 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dnipropetrovsk Mining UniversityDnipropetrovskUkraine
  2. 2.Institute for Applied System AnalysisNational Technical University of Ukraine “Kiev Polytechnic Institute”KievUkraine
  3. 3.Department MathematikFriedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl AMIIErlangenGermany

Personalised recommendations