On the Relationships Between Sub Problems in the Hierarchical Optimization Framework

  • Marouene ChaiebEmail author
  • Jaber Jemai
  • Khaled Mellouli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9101)


In many optimization problems there may exist multiple ways in which a particular hierarchical optimization problem can be modeled. In addition, the diversity of hierarchical optimization problems requires different types of multilevel relations between sub-problems. Thus, the approximate and accurate representations and solutions can be integrated. That is, to address the how partial solutions of sub-problems can be reintegrated to build a solution for the main problem. The nature of relations between components differs from one decomposition strategy to another. In this paper, we will investigate the possible links and relationships that may appear between sub-problems.


Hierarchical optimization Relationships between sub problems Parallel processing Sequential processing Gradually mixed optimization Totally mixed optimization Stackelberg strategy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hertz, A., Lahrichi, N.: A patient assignment algorithm for home care services. Journal of the Operational Research Society 60, 481–495 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Newell, A., Shaw, C., Simon, H.: The process of creative thinking. In: Gruber, H.E., Terrell, G., Wertheimer, M. (eds.) Contemporary Approaches to Creative Thinking, pp. 63–119. Atherton, New York (1993)Google Scholar
  3. 3.
    Swamy, C.: The effectiveness of Stackelberg strategies and tolls for network congestion games. In: SODA, pp. 1133–1142 (2007)Google Scholar
  4. 4.
    Reyniers, D., Tapiero, C.: The Delivery and Control of Quality in Supplier-Producer Contracts. Management Science 41(10), 1581–1590 (1995)CrossRefzbMATHGoogle Scholar
  5. 5.
    Korzhyk, D, Conitzer, V., Parr, R.: Complexity of computing optimal stackelberg strategies in security resource allocation games. In: The Procedings of the National Conference on Artificial Intelligence (AAAI), Atlanta, GA, USA pp. 805–810 (2002)Google Scholar
  6. 6.
    Bacchus, F., Yang, Q.: The expected value of hierarchical problem-solving. In: AAAI 1992 Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 369–374 (1992)Google Scholar
  7. 7.
    Kretinin, K., Egorov, I., Fedechkin, K.: Multi-level robust design optimization fan. In: Workshop CEAS, VrijeUniversiteit Brussels (VUB), Brussels, Belgium (2010)Google Scholar
  8. 8.
    Leitmann, G.: On general Stackelberg Strategies. Journal of optimization theory and applications 26(4), 637–643 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kim, H., Kumar, D., Chen, W., Papalambros, P.: Target feasibility achievement in enterprisedriven hierarchical multidisciplinary design. In: AIAA-2004-4546, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York (2004)Google Scholar
  10. 10.
    Jemai, J., Chaieb, M., Mellouli, K.: The home care scheduling problem: A modeling and solving issue. In: Proceedings of the 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO) (2013)Google Scholar
  11. 11.
    Sobieski, J., Hafka, R.: Interdisciplinary and multilevel optimum design. In: Mota Soares, C.A. (ed.) Computer Aided Optimal Design: Structural and Mechanical Systems NATO ASI Series. Springer, Berlin, Heidelberg Berlin (1987)Google Scholar
  12. 12.
    Michalek, J., Papalambros, P.: Weights, norms, and notation in analytical target cascading. Journal of Mechanical Design 127(3), 499–501 (2005)CrossRefGoogle Scholar
  13. 13.
    Bracken, J., McGill, J.: Mathematical programs with optimization problems in the constraints. Operations Research 21, 37–44 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    El-Beltagy, M., John Keane, J.: A comparison of various optimization algorithms on a multilevel problem. Engineering Applications of Artificial Intelligence 12(8), 639–654 (1999)CrossRefGoogle Scholar
  15. 15.
    Mesarovic, M., Takahara, Y., Macko, D.: Theory of Hierarchical Multilevel Systems. Academic Press, New York, USA (1970)zbMATHGoogle Scholar
  16. 16.
    Michelena, N., Park, H., Papalambros, P.: Convergence properties of analytical target cascading. AIAA Journal 41(5), 897–905 (2003)CrossRefGoogle Scholar
  17. 17.
    Braun, R., Kroo, I.: Development and application of the collaborative optimization architecture in a multidisciplinary design environment multidisciplinary design optimization: State of the art. SIAM, 98–116 (1995)Google Scholar
  18. 18.
    Azarm, S., Li, W.-C.: Multi-level design optimization using global monotonicity analysis. Journal of Mechanical Design 111(2), 259–263 (1989)Google Scholar
  19. 19.
    Tosserams, S., Etman, L., Rooda, J.: An augmented Lagrangian relaxation for analytical target cascading using the alternating directions method of multipliers. Structural and Multidisciplinary Optimization 31(3), 176–189 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Roughgarden, T.: Stackelberg scheduling strategies. SIAM J. Comput. 33(2), 332–350 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Paul Ramasubramanian, P., Kannan, A.: Intelligent Multi-Agent Based Multivariate Statistical Framework for Database Intrusion Prevention System. International Arab Journal of Information Technology 2(3), 239–247 (2005)Google Scholar
  22. 22.
    Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 192–201 (2010)Google Scholar
  23. 23.
    Korilis, Y., Lazar, A., Orda, A.: Achieving network optima using stackelberg routing strategies. IEEE/ACM Trans. Netw. 5(1), 161–173 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LARODEC Institut Supérieur de Gestion de TunisLe BardoTunisie

Personalised recommendations