Towards Multilevel Ant Colony Optimisation for the Euclidean Symmetric Traveling Salesman Problem

  • Thomas Andre Lian
  • Marilex Rea Llave
  • Morten Goodwin
  • Noureddine Bouhmala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9101)


Ant Colony Optimization (ACO) metaheuristic is one of the best known examples of swarm intelligence systems in which researchers study the foraging behavior of bees, ants and other social insects in order to solve combinatorial optimization problems.

In this paper, a multilevel Ant Colony Optimization (MLV-ACO) for solving the traveling salesman problem is proposed, by using a multilevel process operating in a coarse-to-fine strategy. This strategy involves recursive coarsening to create a hierarchy of increasingly smaller and coarser versions of the original problem. The heart of the approach is grouping the variables that are part of the problem into clusters, which is repeated until the size of the smallest cluster falls below a specified reduction threshold. Subsequently, a solution for the problem at the coarsest level is generated, and then successively projected back onto each of the intermediate levels in reverse order. The solution at each level is improved using the ACO metaheuristic before moving to the parent level. The proposed solution has been tested both in circular and randomized environments, and outperform single level counterparts.


Travel Salesman Problem Travel Salesman Problem Memetic Algorithm Randomized Environment Coarse Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Handbook of Metaheuristics, pp. 227–263 (2010)Google Scholar
  2. 2.
    Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation 6(4), 333–346 (2002)CrossRefGoogle Scholar
  3. 3.
    Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing problem. Advanced Engineering Informatics 18(1), 41–48 (2004)CrossRefGoogle Scholar
  4. 4.
    Socha, K., Sampels, M., Manfrin, M.: Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 334–345. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  5. 5.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European Journal of Operational Research 185(3), 1155–1173 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Stützle, T., Hoos, H.H.: Max-min ant system. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: A guide to the theory of np-completeness. San Francisco (1979)Google Scholar
  8. 8.
    Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization for the traveling salesman problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 224–234. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Stützle, T., Dorigo, M.: Aco algorithms for the traveling salesman problem. In: Evolutionary Algorithms in Engineering and Computer Science, pp. 163–183 (1999)Google Scholar
  10. 10.
    Goodwin, M., Granmo, O.C., Radianti, J.: Escape planning in realistic fire scenarios with ant colony optimisation. Applied Intelligence, 1–12 (2014)Google Scholar
  11. 11.
    Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. SC 95, 28 (1995)Google Scholar
  12. 12.
    Benlic, U., Hao, J.K.: A multilevel memetic approach for improving graph k-partitions. IEEE Transactions on Evolutionary Computation 15(5), 624–642 (2011)CrossRefGoogle Scholar
  13. 13.
    Walshaw, C.: A multilevel approach to the travelling salesman problem. Operations Research 50(5), 862–877 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Oduntan, I.O., Toulouse, M., Baumgartner, R., Bowman, C., Somorjai, R., Crainic, T.G.: A multilevel tabu search algorithm for the feature selection problem in biomedical data. Computers & Mathematics with Applications 55(5), 1019–1033 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Bouhmala, N.: A multilevel memetic algorithm for large sat-encoded problems. Evolutionary Computation 20(4), 641–664 (2012)CrossRefGoogle Scholar
  16. 16.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)CrossRefGoogle Scholar
  17. 17.
    Whitley, D., Starkweather, T., Shaner, D.: The traveling salesman and sequence scheduling: Quality solutions using genetic edge recombination. Colorado State University, Department of Computer Science (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Andre Lian
    • 1
  • Marilex Rea Llave
    • 1
  • Morten Goodwin
    • 1
  • Noureddine Bouhmala
    • 1
  1. 1.Department of ICTUniversity of AgderGrimstadNorway

Personalised recommendations