Sheet2RDF: a Flexible and Dynamic Spreadsheet Import&Lifting Framework for RDF

  • Manuel Fiorelli
  • Tiziano Lorenzetti
  • Maria Teresa Pazienza
  • Armando Stellato
  • Andrea Turbati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9101)

Abstract

In this paper, we introduce Sheet2RDF, a platform for the acquisition and transformation of spreadsheets into RDF datasets. Based on Apache UIMA and CODA, two wider-scoped frameworks respectively aimed at knowledge acquisition from unstructured information and RDF triplification, Sheet2RDF narrows down their capabilities in order to restrict the domain of acquisition to spreadsheets, thus taking into consideration their peculiarities and providing informed solutions facilitating the transformation process, while still exploiting their full potentialities. Sheet2RDF comes also bundled in the form of a plugin for two RDF management platforms: Semantic Turkey and VocBench. The integration with such platforms enhances the level of automatism in the process, thanks to a human-computer interface that can exploit suggestions by users and translate them into proper transformation rules. In addition, it strengthens this interaction by direct contact with the data/vocabularies edited in the platform.

Keywords

Human-computer interaction Ontology engineering Ontology population Text analytics UIMA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American 279(5), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Scharffe, F., Atemezing, G., Troncy, R., Gandon, F., Villata, S., Bucher, B., Hamdi, F., Bihanic, L., Képéklian, G., Cotton, F., Euzenat, J., Fan, Z., Vandenbussche, P.-Y., Vatant, B.: Enabling linkeddata publication with the datalift platform. In: AAAI Workshop on Semantic Cities (2012)Google Scholar
  3. 3.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. In: World Wide Web Consortium - Web Standards, January 15 2008. http://www.w3.org/TR/rdf-sparql-query/
  4. 4.
    Lebo, T., Williams, G.: Converting governmental datasets into linked data. In: Proceedings of the 6th International Conference on Semantic Systems, New York, NY, USA, pp. 38:1–38:3 (2010)Google Scholar
  5. 5.
    Han, L., Finin, T.W., Parr, C.S., Sachs, J., Joshi, A.: RDF123: from spreadsheets to RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    W3C: The RDF data cube vocabulary. In: World Wide Web Consortium (W3C), January 14 2014. http://www.w3.org/TR/vocab-data-cube/
  7. 7.
    W3C Open Annotation Community Group: Open annotation data model. In: World Wide Web Consortium (W3C), February 08 2013. http://www.openannotation.org/spec/core/
  8. 8.
    W3C: PROV-DM: the PROV data model. In: World Wide Web Consortium (W3C), April 30 2013. http://www.w3.org/TR/prov-dm/
  9. 9.
    Ermilov, I., Auer, S., Stadler, C.: CSV2RDF: user-driven CSV to RDF mass conversion framework. In: Proceedings of the ISEM 2013, Graz, Austria, September 04–06 2013Google Scholar
  10. 10.
    Fiorelli, M., Pazienza, M.T., Stellato, A., Turbati, A.: CODA: Computer-aided ontology development architecture. IBM Journal of Research and Development 58(2/3), 14:1–14:12 (2014)CrossRefGoogle Scholar
  11. 11.
    Fiorelli, M., Gambella, R., Pazienza, M.T., Stellato, A., Turbati, A.: Semi-automatic knowledge acquisition through CODA. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014, Part II. LNCS, vol. 8482, pp. 78–87. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Ferrucci, D., Lally, A.: Uima: an architectural approach to unstructured information processing in the corporate research environment. Nat. Lang. Eng. 10(3–4), 327–348 (2004)CrossRefGoogle Scholar
  13. 13.
    Pazienza, M.T., Stellato, A., Turbati, A.: PEARL: ProjEction of annotations rule language, a language for projecting (UIMA) annotations over RDF knowledge bases. In: LREC, Istanbul (2012)Google Scholar
  14. 14.
    Pazienza, M.T., Scarpato, N., Stellato, A., Turbati, A.: Semantic Turkey: A Browser-Integrated Environment for Knowledge Acquisition and Management. Semantic Web Journal 3(3), 279–292 (2012)Google Scholar
  15. 15.
    Caracciolo, C., Stellato, A., Rajbahndari, S., Morshed, A., Johannsen, G., Keizer, J., Jacques, Y.: Thesaurus maintenance, alignment and publication as linked data: the AGROVOC use case. International Journal of Metadata, Semantics and Ontologies (IJMSO) 7(1), 65–75 (2012)CrossRefGoogle Scholar
  16. 16.
    Stellato, A., Rajbhandari, S., Turbati, A., Fiorelli, M., Caracciolo, C., Lorenzetti, T., Keizer, J., Pazienza, M. T.: VocBench: a Web Application for Collaborative Development of Multilingual Thesauri. In : The Semantic Web: Trends and Challenges. Springer International Publishing (2015) (accepted for publication)Google Scholar
  17. 17.
    World Wide Web Consortium (W3C): SKOS simple knowledge organization system eXtension for labels (SKOS-XL). In: World Wide Web Consortium (W3C), August 18 2009. http://www.w3.org/TR/skos-reference/skos-xl.html
  18. 18.
    Hodge, G.: Systems of Knowledge Organization for Digital Libraries: Beyond Traditional Authority Files. Council on Library and Information Resources, Washington, DC (2000)Google Scholar
  19. 19.
    World Wide Web Consortium (W3C): SKOS simple knowledge organization system reference. In: World Wide Web Consortium (W3C), August 18 2009. http://www.w3.org/TR/skos-reference/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Manuel Fiorelli
    • 1
  • Tiziano Lorenzetti
    • 1
  • Maria Teresa Pazienza
    • 1
  • Armando Stellato
    • 1
  • Andrea Turbati
    • 1
  1. 1.ART Research GroupUniversity of Rome, Tor VergataRomeItaly

Personalised recommendations