Use of X-Ray and Neutron Scattering Methods with Volume Measurements to Determine Lipid Bilayer Structure and Number of Water Molecules/Lipid

Part of the Subcellular Biochemistry book series (SCBI, volume 71)

Abstract

In this chapter I begin with a historical perspective of membrane models, starting in the early twentieth century. As these membrane models evolved, so did experiments to characterize the structure and water content of purified lipid bilayers. The wide-spread use of the X-ray gravimetric, or Luzzati method, is critically discussed. The main motivation of the gravimetric technique is to determine the number of water molecules/lipid, nW, and then derive other important structural quantities, such as area/lipid, AL. Subsequent experiments from the Nagle/Tristram-Nagle laboratory using X-ray and neutron scattering, first determine AL and then calculate nW, using molecular lipid VL and water VW volumes. This chapter describes the details of our volume experiments to carefully measure VL. Our results also determine nW′, the steric water associated with the lipid headgroup, and how our calculated value compares to many literature values of tightly-associated headgroup water.

Keywords

Waters/lipid Hydration Lipid bilayer X-ray scattering Neutron scattering 

Abbreviations

DSC

Differential scanning calorimetry

NMR

Nuclear magnetic resonance

EPR

Electron spin resonance

FTIR

Fourier transform infrared resonance

Tm

Main transition melting temperature

nW

Number of waters/lipid

nW

Steric number of waters/lipid

AL

Area/lipid

VL

Molecular volume/lipid

VW

Molecular volume/water

MLVs

Multilamellar vesicles

ULVs

Unilamellar vesicles

D, D-space

X-ray lamellar D-spacing

d, d-space

X-ray wide-angle chain spacing

η

Fluctuation parameter

KC

Bending modulus

B

Bulk modulus

un

Vertical displacement

I(qz)

X-ray intensity

|F(qz)|

Form factor

MD simulation

Molecular dynamics simulation

2DC

Hydrocarbon thickness

DB

Bilayer thickness

DH

Headgroup thickness

interdig.

Interdigitated

DPPC

Dipalmitoylphosphatidylcholine

DSPC

Distearoylphosphatidylcholine

DHPC

Dihexadecanoyl-phosphatidylcholine

DLPE

Dilauroylphosphatidylethanolamine

DMPC

Dimyristoylphosphatidylcholine

DMPE

Dimyristoylphosphatidylethanolamine

DLPC

Dilauroylphosphatidylcholine

DOPC

Dioleoylphosphatidylcholine

DOPS

Dioleoylphosphatidylserine

EggPC

Egg phosphatidylcholine

POPC

Palmitoyloleoylphosphatidylcholine

SOPC

Stearoyloleoylphosphatidylcholine

diC22:1PC

Dierucoylphosphatidylcholine

18:0:22:5PC

Stearoyldocosapentaenoylphosphatidylcholine

18:0-22:6PC

Stearoyldocosahexaenoylphosphatidylcholine

diphytanoylPC

Diphytanoylphosphatidylcholine

DLPG

Dilauroylphosphatidylglycerol

DMPG

Dimyristoylphosphatidylglycerol

POPG

Palmitoyloleoylphosphatidylglycerol

SOPG

Stearoyloleoylphosphatidylglycerol

DOPG

Dioleoylphosphatidylglycerol

TMCL

Tetramyristoylcardiolipin

DMPS

Dimyristoylphosphatidylserine

Notes

Acknowledgements

The author would like to thank Ben Sauerwine for preparing the snapshot of fluctuating bilayers from the Monte Carlo simulation. Funding was from NIH GM 44976.

References

  1. Bach D, Miller IR (1998) Hydration of phospholipid bilayers in the presence and absence of cholesterol. Biochim Biophys Acta 1368(2):216–224PubMedCrossRefGoogle Scholar
  2. Binder H, Kohlstrunk B, Heerklotz HH (1999) Hydration and lyotropic melting of amphiphilic molecules: a thermodynamic study using humidity titration calorimetry. J Colloid Interface Sci 220(2):235–249PubMedCrossRefGoogle Scholar
  3. Boscia AL, Akabori K, Benamram Z, Michel JA, Jablin MS, Steckbeck JD, Montelaro RC, Nagle JF, Tristram-Nagle S (2013) Membrane structure correlates to function of LLP2 on the cytoplasmic tail of HIV-1 gp41 protein. Biophys J 105(3):657–666PubMedCentralPubMedCrossRefGoogle Scholar
  4. Boscia AL, Treece BW, Mohammadyani D, Klein-Seetharaman J, Braun AR, Wassenaar TA, Klosgen B, Tristram-Nagle S (2014) X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes. Chem Phys Lipids 178:1–10PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bronshteyn VL, Steponkus PL (1993) Calorimetric studies of freeze-induced dehydration of phospholipids. Biophys J 65(5):1853–1865PubMedCentralPubMedCrossRefGoogle Scholar
  6. Buldt G, Gally HU, Seelig J, Zaccai G (1979) Neutron-diffraction studies on phosphatidylcholine model membranes. 1. Head group conformation. J Mol Biol 134(4):673–691PubMedCrossRefGoogle Scholar
  7. Caillé A (1972) X-ray scattering by smectic-A crystals. CR Acad Sci Paris Sér B 274:891–893Google Scholar
  8. Channareddy S, Jose SS, Janes N (1997) Direct determination of hydration in the lamellar to inverted hexagonal transition of phosphatidylethanolamine. J Am Chem Soc 119:2345–2347CrossRefGoogle Scholar
  9. Chu N, Kučerka N, Liu YF, Tristram-Nagle S, Nagle JF (2005) Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys Rev E 71(4):041904CrossRefGoogle Scholar
  10. Crowe LM, Spargo BJ, Ioneda T, Beaman BL, Crowe JH (1994) Interaction of cord factor (alpha, alpha′-trehalose-6,6′-dimycolate) with phospholipids. Biochim Biophys Acta Biomembr 1194:53–60CrossRefGoogle Scholar
  11. Danielli JF, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Physiol 5(4):495–508CrossRefGoogle Scholar
  12. de Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  13. Dufourcq P, Louis H, Dandre F, Lavie J, Bonnet J, Lamaziere JM (1997) Phenotypic modification of arterial smooth muscle cells in response to medial dissection. Coron Artery Dis 8(3–4):163–170PubMedCrossRefGoogle Scholar
  14. Eldho NV, Feller SE, Tristram-Nagle S, Polozov IV, Gawrisch K (2003) Polyunsaturated docosahexaenoic vs docosapentaenoic acid – differences in lipid matrix properties from the loss of one double bond. J Am Chem Soc 125(21):6409–6421PubMedCrossRefGoogle Scholar
  15. Finer EG, Darke A (1974) Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem Phys Lipids 12(1):1–16PubMedCrossRefGoogle Scholar
  16. Frye LD, Edidin M (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci 7(2):319–335PubMedGoogle Scholar
  17. Gallova J, Uhrikova D, Kučerka N, Teixeira J, Balgavy P (2008) Hydrophobic thickness, lipid surface area and polar region hydration in monounsaturated diacylphosphatidylcholine bilayers: SANS study of effects of cholesterol and beta-sitosterol in unilamellar vesicles. Biochim Biophys Acta 1778(11):2627–2632PubMedCrossRefGoogle Scholar
  18. Gawrisch K, Richter W, Mops A, Balgavy P, Arnold K, Klose G (1985) The influence of water concentration on the structure of egg-yolk phospholipid water dispersions. Stud Biophys 108(1):5–16Google Scholar
  19. Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41(4):439–443PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gouliaev N, Nagle JF (1998) Simulations of interacting membranes in the soft confinement regime. Phys Rev Lett 81(12):2610–2613PubMedCentralPubMedCrossRefGoogle Scholar
  21. Grdadolnik J, Hadzi D (1994) Conformational effects of metal salt binding to the polar head of phosphatidylcholines investigated by FTIR spectroscopy. Chem Phys Lipids 65:121–132CrossRefGoogle Scholar
  22. Greenwood AI, Pan JJ, Mills TT, Nagle JF, Epand RM, Tristram-Nagle S (2008) CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. Biochim Biophys Acta Biomembr 1778(4):1120–1130CrossRefGoogle Scholar
  23. Guinier A (1963) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. W. H. Freeman, San FranciscoGoogle Scholar
  24. Guler SD, Ghosh DD, Pan JJ, Mathai JC, Zeidel ML, Nagle JF, Tristram-Nagle S (2009) Effects of ether vs. ester linkage on lipid bilayer structure and water permeability. Chem Phys Lipids 160(1):33–44PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hallinen KM, Tristram-Nagle S, Nagle JF (2012) Volumetric stability of lipid bilayers. Phys Chem Chem Phys 14(44):15452–15457PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hosemann R, Bagchi SN (1962) Direct analysis of diffraction by matter. North-Holland, AmsterdamGoogle Scholar
  27. Hristova K, White SH (1998) Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration. Biophys J 74(5):2419–2433PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jendrasiak GL, Hasty JH (1974) The hydration of phospholipids. Biochim Biophys Acta 337(1):79–91PubMedCrossRefGoogle Scholar
  29. Katsaras J (1998) Adsorbed to a rigid substrate, dimyristoylphosphatidylcholine multibilayers attain full hydration in all mesophases. Biophys J 75(5):2157–2162PubMedCentralPubMedCrossRefGoogle Scholar
  30. Klose G, Konig B, Meyer HW, Schulze G, Degovics G (1988) Small-angle X-ray-scattering and electron-microscopy of crude dispersions of swelling lipids and the influence of the morphology on the repeat distance. Chem Phys Lipids 47(3):225–234CrossRefGoogle Scholar
  31. Koenig BW, Strey HH, Gawrisch K (1997) Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73(4):1954–1966PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kučerka N, Kiselev MA, Balgavy P (2004) Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: a comparison of evaluation methods. Eur Biophys J Biophys 33(4):328–334CrossRefGoogle Scholar
  33. Kučerka N, Liu YF, Chu NJ, Petrache HI, Tristram-Nagle ST, Nagle JF (2005a) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88(4):2626–2637PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kučerka N, Tristram-Nagle S, Nagle JF (2005b) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208(3):193–202PubMedCrossRefGoogle Scholar
  35. Kučerka N, Tristram-Nagle S, Nagle JF (2006) Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys J 90(11):L83–L85PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and x-ray scattering data. Biophys J 95(5):2356–2367PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ladbrook BD, Williams RM, Chapman D (1968) Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta 150(3):333–340CrossRefGoogle Scholar
  38. Lairion F, Filler R, Disalvo EA (2002) Reversed micelles as model systems to study interfacial properties of lipid bilayers. Colloid Surf B 25(4):369–371CrossRefGoogle Scholar
  39. Levine YK (1973) X-ray diffraction studies of membranes. Prog Surf Sci 3:279–352CrossRefGoogle Scholar
  40. Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain-length in fluid phosphatidylcholine vesicles. J Mol Biol 166(2):211–217PubMedCrossRefGoogle Scholar
  41. Liu YF, Nagle JF (2004) Diffuse scattering provides material parameters and electron density profiles of biomembranes. Phys Rev E 69(4):040901CrossRefGoogle Scholar
  42. Lyatskaya Y, Liu YF, Tristram-Nagle S, Katsaras J, Nagle JF (2001) Method for obtaining structure and interactions from oriented lipid bilayers. Phys Rev E 63(1):011907CrossRefGoogle Scholar
  43. Mcintosh TJ, Simon SA (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25(17):4948–4952PubMedCrossRefGoogle Scholar
  44. Mendelsohn R, Davies MA, Schuster HF, Xu ZC, Bittman R (1991) Cd2 rocking modes as quantitative infrared probes of one-bond, 2-bond, and 3-bond conformational disorder in dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine cholesterol mixtures. Biochemistry 30(35):8558–8563PubMedCrossRefGoogle Scholar
  45. Miller IR, Bach D, Wachtel EJ, Eisenstein M (2002) Interrelation between hydration and interheadgroup interaction in phospholipids. Bioelectrochemistry 58(2):193–196PubMedCrossRefGoogle Scholar
  46. Mills TT, Toombes GES, Tristram-Nagle S, Smilgies DM, Feigenson GW, Nagle JF (2008) Order parameters and areas in fluid-phase oriented lipid membranes using wide angle x-ray scattering. Biophys J 95(2):669–681PubMedCentralPubMedCrossRefGoogle Scholar
  47. Nagle JF (1976) Theory of lipid monolayer and bilayer phase-transitions – effect of headgroup interactions. J Membr Biol 27(3):233–250PubMedCrossRefGoogle Scholar
  48. Nagle JF (1980) Theory of the main lipid bilayer phase transition. Annu Rev Phys Chem 31:157–195CrossRefGoogle Scholar
  49. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr 1469(3):159–195CrossRefGoogle Scholar
  50. Nagle JF, Wilkinson DA (1978) Lecithin bilayers – density measurements and molecular interactions. Biophys J 23(2):159–175PubMedCentralPubMedCrossRefGoogle Scholar
  51. Nagle JF, Zhang RT, Tristram-Nagle S, Sun WJ, Petrache H, Suter RM (1996) X-ray structure determination of fully hydrated L(alpha) phase DPPC bilayers. Biophys J 70(2):1419–1431PubMedCentralPubMedCrossRefGoogle Scholar
  52. Pan J, Tristram-Nagle S, Kučerka N, Nagle JF (2008a) Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophys J 94(1):117–124PubMedCentralPubMedCrossRefGoogle Scholar
  53. Pan JJ, Mills TT, Tristram-Nagle S, Nagle JF (2008b) Cholesterol perturbs lipid bilayers nonuniversally. Phys Rev Lett 100(19)Google Scholar
  54. Pan JJ, Tieleman DP, Nagle JF, Kučerka N, Tristram-Nagle S (2009a) Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations. Biochim Biophys Acta Biomembr 1788(6):1387–1397CrossRefGoogle Scholar
  55. Pan JJ, Tristram-Nagle S, Nagle JF (2009b) Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E 80(2):021931CrossRefGoogle Scholar
  56. Pan JJ, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, Kučerka N (2012) Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim Biophys Acta Biomembr 1818(9):2135–2148CrossRefGoogle Scholar
  57. Petrache HI, Gouliaev N, Tristram-Nagle S, Zhang RT, Suter RM, Nagle JF (1998a) Interbilayer interactions from high-resolution x-ray scattering. Phys Rev E 57(6):7014–7024CrossRefGoogle Scholar
  58. Petrache HI, Tristram-Nagle S, Nagle JF (1998b) Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids 95(1):83–94PubMedCentralPubMedCrossRefGoogle Scholar
  59. Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86(3):1574–1586PubMedCentralPubMedCrossRefGoogle Scholar
  60. Pohle W, Selle C, Fritzsche H, Binder H (1998) Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena. Biospectroscopy 4(4):267–280PubMedCrossRefGoogle Scholar
  61. Raghunathan M, Zubovski Y, Venable RM, Pastor RW, Nagle JF, Tristram-Nagle S (2012) Structure and elasticity of lipid membranes with genistein and daidzein bioflavinoids using X-ray scattering and MD simulations. J Phys Chem B 116(13):3918–3927PubMedCentralPubMedCrossRefGoogle Scholar
  62. Rand RP, Parsegian VA (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta 988(3):351–376CrossRefGoogle Scholar
  63. Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10:343–418PubMedGoogle Scholar
  64. Salsbury NJ, Chapman D, Darke A (1972) Deuteron magnetic-resonance studies of water associated with phospholipids. Chem Phys Lipids 8(2):142–151PubMedCrossRefGoogle Scholar
  65. Shchelokovskyy P, Tristram-Nagle S, Dimova R (2011) Effect of the HIV-1 fusion peptide on the mechanical properties and leaflet coupling of lipid bilayers. New J Phys 13:025004PubMedCentralCrossRefGoogle Scholar
  66. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39PubMedCrossRefGoogle Scholar
  67. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731PubMedCrossRefGoogle Scholar
  68. Small DM (1967) Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res 8(6):551–557PubMedGoogle Scholar
  69. Sun W, Suter RM, Knewtson MA, Worthington CR, Tristram-Nagle S, Zhang R, Nagle JF (1994) Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(5):4665–4676PubMedGoogle Scholar
  70. Sun WJ, Tristram-Nagle S, Suter RM, Nagle JF (1996) Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence. Biophys J 71(2):885–891PubMedCentralPubMedCrossRefGoogle Scholar
  71. Swart SP (1907) About the permeability of artificial lipid membranes for proferments. Biochem Z 6:358–365Google Scholar
  72. Tardieu A, Luzzati V, Reman FC (1973) Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol 75(4):711–733PubMedCrossRefGoogle Scholar
  73. Torbet J, Wilkins MHF (1976) X-Ray diffraction studies of lecithin bilayers. J Theor Biol 62(2):447–458PubMedCrossRefGoogle Scholar
  74. Tristram-Nagle SA (2007) Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. Methods Mol Biol 400:63–75PubMedCentralPubMedCrossRefGoogle Scholar
  75. Tristram-Nagle S, Nagle JF (2004) Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem Phys Lipids 127(1):3–14PubMedCentralPubMedCrossRefGoogle Scholar
  76. Tristram-Nagle S, Nagle JF (2007) HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys J 93(6):2048–2055PubMedCentralPubMedCrossRefGoogle Scholar
  77. Tristram-Nagle S, Yang CP, Nagle JF (1986) Thermodynamic studies of purple membrane. Biochim Biophys Acta 854(1):58–66PubMedCrossRefGoogle Scholar
  78. Tristram-Nagle S, Wiener MC, Yang CP, Nagle JF (1987) Kinetics of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry Us 26(14):4288–4294CrossRefGoogle Scholar
  79. Tristram-Nagle S, Zhang R, Suter RM, Worthington CR, Sun WJ, Nagle JF (1993) Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys J 64(4):1097–1109PubMedCentralPubMedCrossRefGoogle Scholar
  80. Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J 75(2):917–925PubMedCentralPubMedCrossRefGoogle Scholar
  81. Tristram-Nagle S, Liu YF, Legleiter J, Nagle JF (2002) Structure of gel phase DMPC determined by X-ray diffraction. Biophys J 83(6):3324–3335PubMedCentralPubMedCrossRefGoogle Scholar
  82. Tristram-Nagle S, Kim DJ, Akhunzada N, Kučerka N, Mathai JC, Katsaras J, Zeidel M, Nagle JF (2010) Structure and water permeability of fully hydrated diphytanoylPC. Chem Phys Lipids 163(6):630–637PubMedCentralPubMedCrossRefGoogle Scholar
  83. Ulrich AS, Watts A (1994) Molecular response of the lipid headgroup to bilayer hydration monitored by H2-Nmr. Biophys J 66(5):1441–1449PubMedCentralPubMedCrossRefGoogle Scholar
  84. Wiener MC, Tristram-Nagle S, Wilkinson DA, Campbell LE, Nagle JF (1988) Specific volumes of lipids in fully hydrated bilayer dispersions. Biochim Biophys Acta 938(2):135–142PubMedCrossRefGoogle Scholar
  85. Wilkinson DA, McIntosh TJ (1986) A subtransition in a phospholipid with a net charge, dipalmitoylphosphatidylglycerol. Biochemistry 25(2):295–298PubMedCrossRefGoogle Scholar
  86. Wilkinson DA, Nagle JF (1978) Differential dilatometer. Anal Biochem 84(1):263–271PubMedCrossRefGoogle Scholar
  87. Wilkinson DA, Nagle JF (1979) Dilatometric study of binary mixtures of phosphatidylcholines. Biochemistry 18(19):4244–4249PubMedCrossRefGoogle Scholar
  88. Wilkinson DA, Nagle JF (1981) Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions. Biochemistry 20(1):187–192PubMedCrossRefGoogle Scholar
  89. Wilkinson DA, Nagle JF (1982) Specific heats of lipid dispersions in single-phase regions. Biochim Biophys Acta 688(1):107–115PubMedCrossRefGoogle Scholar
  90. Wilkinson DA, Nagle JF (1984) Metastability in the phase behavior of dimyristoylphosphatidylethanolamine bilayers. Biochemistry 23(7):1538–1541PubMedCrossRefGoogle Scholar
  91. Wilkinson DA, Tirrell DA, Turek AB, McIntosh TJ (1987) Tris buffer causes acyl chain interdigitation in phosphatidylglycerol. Biochim Biophys Acta 905(2):447–453PubMedCrossRefGoogle Scholar
  92. Yang CP, Nagle JF (1988) Phase transformations in lipids follow classical kinetics with small fractional dimensionalities. Phys Rev A 37(10):3993–4000PubMedCrossRefGoogle Scholar
  93. Zhang R, Suter RM, Nagle JF (1994) Theory of the structure factor of lipid bilayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 50(6):5047–5060PubMedGoogle Scholar
  94. Zhang R, Sun WJ, Tristram-Nagle S, Headrick RL, Suter RM, Nagle JF (1995) Critical fluctuations in membranes. Phys Rev Lett 74(14):2832–2835PubMedCrossRefGoogle Scholar
  95. Zhang R, Tristram-Nagle S, Sun WJ, Headrick RL, Irving TC, Suter RM, Nagle JF (1996) Small-angle X-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory. Biophys J 70(1):349–357PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Biological Physics Group, Physics DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations