Advertisement

Predicting Protein Functions Based on Dynamic Protein Interaction Networks

  • Bihai Zhao
  • Jianxin Wang
  • Fang-Xiang Wu
  • Yi Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9096)

Abstract

Accurate annotation of protein functions plays a significant role in understanding life at the molecular level. With accumulation of sequenced genomes, the gap between available sequence data and their functional annotations has been widening. Many computational methods have been proposed to predict protein function from protein-protein interaction (PPI) networks. However, the precision of function prediction still needs to be improved. Taking into account the dynamic nature of PPIs, we construct a dynamic protein interactome network by integrating PPI network and gene expression data. To reduce the negative effect of false positive and false negative on the protein function prediction, we predict and generate some new protein interactions combing with proteins’ domain information and protein complex information and weight all interactions. Based on the weighted dynamic network, we propose a method for predicting protein functions, named PDN. After traversing all the different dynamic networks, a set of candidate neighbors is formed. Then functions derived from the set of candidates are scored and sorted, according to the weighted degree of candidate proteins. Experimental results on four different yeast PPI networks indicate that the accuracy of PDN is 18% higher than other competing methods.

Keywords

Protein-protein interaction Functions prediction Dynamic networks PDN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, D.T., Swindells, M.B.: Getting the most from PSI–BLAST. Trends in Biochemical Sciences 27(3), 161–164 (2002)CrossRefGoogle Scholar
  2. Schwikowski, B., Uetz, P., Fields, S.: A network of protein–protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)CrossRefGoogle Scholar
  3. Hishigaki, H., Nakai, K., Ono, T., et al.: Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18(6), 523–531 (2001)CrossRefGoogle Scholar
  4. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13), 1623–1630 (2006)CrossRefGoogle Scholar
  5. Vazquez, A., Flammini, A., Maritan, A., et al.: Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 21(6), 697–700 (2003)CrossRefGoogle Scholar
  6. Nabieva, E., Jim, K., Agarwal, A., et al.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(suppl. 1), i302–i310 (2005)Google Scholar
  7. Deng, M., Zhang, K., Mehta, S., et al.: Prediction of protein function using protein-protein interaction data. Journal of Computational Biology 10(6), 947–960 (2003)CrossRefGoogle Scholar
  8. Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(suppl. 1), i197–i204 (2003)Google Scholar
  9. Yeang, C.H., Mak, H.C., McCuine, S., et al.: Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol. 6, R62 (2005)Google Scholar
  10. Scott, J., Ideker, T., Karp, R.M., et al.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133–144 (2006)CrossRefMathSciNetGoogle Scholar
  11. Zhang, S., Chen, H., Liu, K., Sun, Z.: Inferring protein function by domain context similarities in protein-protein interaction networks. BMC Bioinformatics 10, 395 (2009)CrossRefGoogle Scholar
  12. Peng, W., Wang, J., Cai, J., et al.: Improving protein function prediction using domain and protein complexes in PPI networks. BMC Systems Biology 8(1), 35 (2014)CrossRefGoogle Scholar
  13. Liang, S., Zheng, D., Standley, D.M., et al.: A novel function prediction approach using protein overlap networks. BMC Systems Biology 7(1), 61 (2013)CrossRefGoogle Scholar
  14. Peters, J.M.: The anaphase-promoting complex: proteolysis in mitosis and beyond. Molecular Cell 9(5), 931–943 (2002)CrossRefGoogle Scholar
  15. Black, D.L.: Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry 72(1), 291–336 (2003)CrossRefMathSciNetGoogle Scholar
  16. LaCava, J., Houseley, J., Saveanu, C., et al.: RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5), 713–724 (2005)CrossRefGoogle Scholar
  17. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences 100(21), 12123–12128 (2003)CrossRefGoogle Scholar
  18. Yook, S.H., Oltvai, Z.N., Barabási, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4(4), 928–942 (2004)CrossRefGoogle Scholar
  19. Mantzaris, A.V., Bassett, D.S., Wymbs, N.F., et al.: Dynamic network centrality summarizes learning in the human brain. Journal of Complex Networks 1(1), 83–92 (2013)CrossRefGoogle Scholar
  20. Tu, B.P., Kudlicki, A., Rowicka, M., et al.: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751), 1152–1158 (2005)CrossRefGoogle Scholar
  21. Tang, X., Wang, J., Liu, B., et al.: A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics 12(1), 339 (2011)CrossRefGoogle Scholar
  22. Wang, J., Peng, X., Peng, W., et al.: Dynamic protein interaction network construction and applications. Proteomics 14(4-5), 338–352 (2014)CrossRefGoogle Scholar
  23. Zhao, B.H., Wang, J.X., Li, M., et al.: Detecting Protein Complexes Based on Uncertain Graph Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11(3), 486–497 (2014)CrossRefMathSciNetGoogle Scholar
  24. Zhao, B.H., Wang, J.X., Li, M., et al.: Prediction of essential proteins based on overlapping essential modules. IEEE Transactions on NanoBioscience 13(4), 415–424 (2014)CrossRefGoogle Scholar
  25. Xenarios, X., et al.: DIP: the database of interacting proteins. Nucleic Acids Research 28, 289–291 (2000)CrossRefGoogle Scholar
  26. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)CrossRefGoogle Scholar
  27. Finn, R.D., Mistry, J., Tate, J., et al.: The Pfam protein families database. Nucleic Acids Research, gkp985 (2009)Google Scholar
  28. Pu, S., Wong, J., Turner, B., et al.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research 37(3), 825–831 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bihai Zhao
    • 1
    • 2
  • Jianxin Wang
    • 1
  • Fang-Xiang Wu
    • 1
    • 3
  • Yi Pan
    • 4
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Information and Computing ScienceChangsha UniversityChangshaChina
  3. 3.Department of Mechanical Engineering and Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonCanada
  4. 4.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations