Advertisement

Sorting Signed Circular Permutations by Super Short Reversals

  • Gustavo Rodrigues GalvãoEmail author
  • Christian Baudet
  • Zanoni Dias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9096)

Abstract

We consider the problem of sorting a circular permutation by reversals of length at most 2, a problem that finds application in comparative genomics. Polynomial-time solutions for the unsigned version of this problem are known, but the signed version remained open. In this paper, we present the first polynomial-time solution for the signed version of this problem. Moreover, we perform an experiment for inferring distances and phylogenies for published Yersinia genomes and compare the results with the phylogenies presented in previous works.

Keywords

Feasible Solution Yersinia Pestis Circular Permutation Rearrangement Event Signed Permutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalevi, D.A., Eriksen, N., Eriksson, K., Andersson, S.G.E.: Measuring genome divergence in bacteria: A case study using chlamydian data. Journal of Molecular Evolution 55(1), 24–36 (2002)CrossRefGoogle Scholar
  2. 2.
    Darling, A.E., Miklós, I., Ragan, M.A.: Dynamics of genome rearrangement in bacterial populations. PLoS Genetics 4(7), e1000128 (2008)Google Scholar
  3. 3.
    Egri-Nagy, A., Gebhardt, V., Tanaka, M.M., Francis, A.R.: Group-theoretic models of the inversion process in bacterial genomes. Journal of Mathematical Biology 69(1), 243–265 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. The MIT Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Galvão, G.R., Lee, O., Dias, Z.: Sorting signed permutations by short operations. Algorithms for Molecular Biology 10(12) (2015)Google Scholar
  6. 6.
    Jerrum, M.R.: The complexity of finding minimum-length generator sequences. Theoretical Computer Science 36, 265–289 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Lefebvre, J.F., El-Mabrouk, N., Tillier, E., Sankoff, D.: Detection and validation of single gene inversions. Bioinformatics 19(suppl 1), i190–i196 (2003)Google Scholar
  8. 8.
    Lemey, P., Salemi, M., Vandamme, A.: The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(1), 406–425 (1987)Google Scholar
  10. 10.
    Seoighe, C., Federspiel, N., Jones, T., Hansen, N., Bivolarovic, V., Surzycki, R., Tamse, R., Komp, C., Huizar, L., Davis, R.W., Scherer, S., Tait, E., Shaw, D.J., Harris, D., Murphy, L., Oliver, K., Taylor, K., Rajandream, M.A., Barrell, B.G., Wolfe, K.H.: Prevalence of small inversions in yeast gene order evolution. Proceedings of the National Academy of Sciences of the United States of America 97(26), 14433–14437 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gustavo Rodrigues Galvão
    • 1
    Email author
  • Christian Baudet
    • 2
    • 3
  • Zanoni Dias
    • 1
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil
  2. 2.Laboratoire Biométrie et Biologie EvolutiveUniversité de LyonCNRS, VilleurbanneFrance
  3. 3.Inria Grenoble - Rhône-Alpes, Erable TeamVilleurbanne CedexFrance

Personalised recommendations