Assessing the Robustness of Parsimonious Predictions for Gene Neighborhoods from Reconciled Phylogenies: Supplementary Material

  • Ashok RajaramanEmail author
  • Cedric Chauve
  • Yann Ponty
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9096)


The availability of many assembled genomes opens the way to study the evolution of syntenic character within a phylogenetic context. The DeCo algorithm, recently introduced by Bérard et al., computes parsimonious evolutionary scenarios for gene adjacencies, from pairs of reconciled gene trees. Following the approach pioneered by Sturmfels and Pachter, we describe how to modify the DeCo dynamic programming algorithm to identify classes of cost schemes that generate similar parsimonious evolutionary scenarios for gene adjacencies. We also describe how to assess the robustness, again to changes of the cost scheme, of the presence or absence of specific ancestral gene adjacencies in parsimonious evolutionary scenarios. We apply our method to six thousands mammalian gene families, and show that computing the robustness to changes of cost schemes provides interesting insights on the DeCo model.


Evolutionary Scenario Gene Adjacency Extended Signature Cost Scheme Adjacency Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bansal, M.S., Alm, E.J., Kellis, M.: Reconciliation revisited: Handling multiple optima when reconciling with duplication, transfer, and loss. J. Comput. Biol. 20(10), 738–754 (2013)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bérard, S., Gallien, C., Boussau, B., Szöllosi, G.J., Daubin, V., Tannier, E.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28(18), 382–388 (2012)CrossRefGoogle Scholar
  3. 3.
    Biller, P., Feijão, P., Meidanis, J.: Rearrangement-based phylogeny using the single-cut-or-join operation. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(1), 122–134 (2013)CrossRefGoogle Scholar
  4. 4.
    Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput. Geom. 16, 361–368 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chauve, C., El-Mabrouk, N., Gueguen, L., Semeria, M., Tannier, E.: Duplication, rearrangement and reconciliation: A follow-up 13 years later. Models and Algorithms for Genome Evolution, 47–62 (2013)Google Scholar
  6. 6.
    Chauve, C., Ponty, Y., Zanetti, J.P.P.: Evolution of genes neighborhood within reconciled phylogenies: An ensemble approach. In: Campos, S. (ed.) BSB 2014. LNCS, vol. 8826, pp. 49–56. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Gagnon, Y., Blanchette, M., El-Mabrouk, N.: A flexible ancestral genome reconstruction method based on gapped adjacencies. BMC Bioinformatics 13(S-19), S4 (2012)Google Scholar
  8. 8.
    Gusfield, D., Balasubramanian, K., Naor, D.: Parametric optimization of sequence alignment. Algorithmica 12(4/5), 312–326 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biol. 8, R141 (2007)Google Scholar
  10. 10.
    Libeskind-Hadas, R., Wu, Y., Bansal, M.S., Kellis, M.: Pareto-optimal phylogenetic tree reconciliation. Bioinformatics 30(12), 87–95 (2014)CrossRefGoogle Scholar
  11. 11.
    Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: DUPCAR: reconstructing contiguous ancestral regions with duplications. J. Comput. Biol. 15(8), 1007–1027 (2008)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Manuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral multichromosomal genomes. BMC Bioinformatics 13(S-19), S11 (2012)Google Scholar
  13. 13.
    Pachter, L., Sturmfels, B.: Parametric inference for biological sequence analysis. Proc. Natl. Acad. Sci. USA 101(46), 16138–16143 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Pachter, L., Sturmfels, B.: Tropical geometry of statistical models. Proc. Natl. Acad. Sci. USA 101(46), 16132–16137 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge University Press (2005)Google Scholar
  16. 16.
    Saule, C., Giegerich, R.: Observations on the feasibility of exact Pareto optimization. In: Proceedings of CMSR 2014, pp. 43–56 (2014)Google Scholar
  17. 17.
    Schnattinger, T., Schöning, U., Kestler, H.A.: Structural RNA alignment by multi-objective optimization. Bioinformatics 29(13), 1607–1613 (2013)CrossRefGoogle Scholar
  18. 18.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics, 10 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.Pacific Institute for Mathematical Sciences, CNRS UMI3069VancouverCanada
  3. 3.CNRS/LIXEcole PolytechniquePalaiseauFrance

Personalised recommendations