Weaver: A Multiagent, Spatial-Explicit and High-Performance Framework to Study Complex Ecological Networks

  • José Román Bilbao-Castro
  • Gabriel Barrionuevo
  • Dolores Ruiz-Lupión
  • Leocadio G. Casado
  • Jordi Moya-Laraño
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 524)

Abstract

This work presents a new agent based simulation tool specifically designed to study ecological networks. It includes many unique features like genetics, evolution, space-explicit simulation domain, flexible environmental modeling, etc. Written in C++, it yields a high performance experience and allows extremely large and complex simulations to be run, with up to hundreds of thousands of individuals moving and interacting in different ways to feed, reproduce or attack each other. It can be used to study ecosystems at different scales, from microscopic to superior animals whether alive or extinct.

Keywords

Ecology Agent based model Individual based model 

References

  1. 1.
    Margalef, R.: On certain unifying principles in ecology. Am. Nat. 97(897), 357–374 (1963)CrossRefGoogle Scholar
  2. 2.
    Cohen, Joel E.: Food Webs and Niche Space. Princeton University Press, Princeton (1978)Google Scholar
  3. 3.
    Zhou, Y., Brose, U., Kastenberg, W., Martinez, N. D.: A New Approach to Ecological Risk Assessment: Simulating Effects of Global Warming on Complex Ecological Networks Unifying Themes in Complex Systems, pp. 342–350 (2011)Google Scholar
  4. 4.
    Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regulatory networks. J. Bioinform. Comput. Biol. 3(2), 415–436 (2005)CrossRefGoogle Scholar
  5. 5.
    ECMA international: The JSON data interchange format. ECMA-404 (RFC 4627) (2013)Google Scholar
  6. 6.
    Moya-Laraño, J., Verdeny-Vilalta, O., Rowntree, J., Melguizo-Ruiz, N., Montserrat, M., Laiolo, P.: Climate change and eco-evolutionary dynamics in food webs. Adv. Ecol. Res. 47, 1 (2012)CrossRefGoogle Scholar
  7. 7.
    Verdeny-Vilalta, O., Moya-Laraño, J.: Seeking water while avoiding predators: moisture gradients can affect predator-prey interactions. Anim. Behav. 90, 101–108 (2014)CrossRefGoogle Scholar
  8. 8.
    Moya-Laraño, J., Bilbao-Castro, J.R., Barrionuevo, G., Ruiz-Lupión, D., Casado, L.G., Montserrat, M., Melián, C.J., Magalhães, S.: Eco-evolutionary spatial dynamics: rapid evolution and isolation explain food web persistence. Adv. Ecol. Res. 50, 75–143 (2014)CrossRefGoogle Scholar
  9. 9.
    Gandrud, C.: Reproducible Research with R and RStudio. Chapman & Hall/CRC Press (2013)Google Scholar
  10. 10.
    Tisue, S., Wilensky, U.: NetLogo: design and implementation of a multi-agent modeling environment. In: Proceedings of Agent 2004, Chicago, IL, pp. 7–9 (2004)Google Scholar
  11. 11.
    Railsback, Steven F., Lytinen, Steven L., Jackson, Stephen K.: Agent-based simulation platforms: review and development recommendations. SIMULATION 82(9), 609–623 (2006)CrossRefGoogle Scholar
  12. 12.
    Collier, N.: Repast: an extensible framework for agent simulation. Nat. Resour. Environ. Issues 8(4), 17–21 (2001)Google Scholar
  13. 13.
    Collier, N., North, M.: Repast HPC: a platform for large-scale agent-based modeling, in large-scale computing. In: Dubitzky, W., Kurowski, K., Schott, B. (eds.). John Wiley & Sons Inc, Hoboken (2011). doi:10.1002/9781118130506.ch5
  14. 14.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. SIMULATION 81(7), 517–527 (2005)CrossRefGoogle Scholar
  15. 15.
    Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations. Santa Fe Institute, Santa Fe (1996)Google Scholar
  16. 16.
    Cao, K., Feng, X., Wan, H.: Applying agent-based modeling to the evolution of eco-industrial systems. Ecol. Econ. 68(11), 2868–2876 (2009)CrossRefGoogle Scholar
  17. 17.
    Terna, P.: Simulation tools for social scientists: building agent based models with swarm. J. Artif. Soc. Soc. Simul. 1(2), 1–12 (1998)Google Scholar
  18. 18.
    Macy, M.W., Willer, R.: From factors to actors: computational sociology and agent-based modeling. Ann. Rev. Sociol. 28, 143–166 (2002)CrossRefGoogle Scholar
  19. 19.
    Rashid, S., Yoon, Y., Kashem, S.B.: Assessing the potential impact of microfinance with agent-based modeling. Econ. Model. 28(4), 1907–1913 (2011)CrossRefGoogle Scholar
  20. 20.
    Roozmand, O., Ghasem-Aghaee, N., Hofstede, G.J., Nematbakhsh, M.A., Baraani, A., Verwaart, T.: Agent-based modeling of consumer decision making process based on power distance and personality. Knowledge-Based Syst. 24(7), 1075–1095 (2011)CrossRefGoogle Scholar
  21. 21.
    Zellner, M.L.: Embracing complexity and uncertainty: the potential of agent-based modeling for environmental planning and policy. Plan. Theory Prac. 9(4), 437–457 (2008)CrossRefGoogle Scholar
  22. 22.
    Bichraoui, N., Guillaume, B., Halog, A.: Agent-based modelling simulation for the development of an industrial symbiosis-preliminary results. Procedia Environ. Sci. 17, 195–204 (2013)CrossRefGoogle Scholar
  23. 23.
    North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1), 1–25 (2006)CrossRefGoogle Scholar
  24. 24.
    Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4(3), 151–162 (2010)CrossRefGoogle Scholar
  25. 25.
    Tobias, R., Hofmann, C.: Evaluation of free java-libraries for social-scientific agent based simulation. J. Artif. Soc.Soc. Simul. 7, 6 (2004)Google Scholar
  26. 26.
    Ginovart, M.: Discovering the power of individual-based modelling in teaching and learning: the study of a predator-prey system. J. Sci. Edu. Technol. 23(4), 496–513 (2014)CrossRefGoogle Scholar
  27. 27.
    Shiet, A.B., Shiet, G.W.: An introduction to agent-based modeling for undergraduates. Procedia Comput. Sci. 29, 1392–1402 (2014)CrossRefGoogle Scholar
  28. 28.
    Holcombe, M., Coakley, S., Smallwood, R.: A general framework for agent-based modelling of complex systems. In: Proceedings of the 2006 European Conference on Complex Systems (2006)Google Scholar
  29. 29.
    Richmond, P., Coakley, S., Romano, M.: A high performance agent based modelling framework on graphics card hardware with CUDA. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, Budapest, Hungary, vol. 2, pp. 1125–1126 (2009)Google Scholar
  30. 30.
    Grimm, V.: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115(2), 129–148 (1999)CrossRefGoogle Scholar
  31. 31.
    Grimm, V., Steven, F.: Individual-based Modeling and Ecology. Princeton University Press, Princeton (2005)CrossRefMATHGoogle Scholar
  32. 32.
    Chion, C., Lamontagne, P., Turgeon, S., Parrott, L., Landry, J.-A., Marceau, D.J., Martins, C.C.A., Michaud, R., Ménard, N., Cantin, G., Dionne, S.: Eliciting cognitive processes underlying patterns of human-wildlife interactions for agent-based modelling. Ecol. Model. 222(14), 2213–2226 (2011)CrossRefGoogle Scholar
  33. 33.
    Girard, P., Parrott, L., Caron, C.-A., Green, D.M.: Effects of temperature and surface water availability on spatiotemporal dynamics of stream salamanders using pattern-oriented modelling. Ecol. Model. 296, 12–23 (2015)CrossRefGoogle Scholar
  34. 34.
    De Angelis, D.L., Grimm, V.: Individual-based models in ecology after four decades. F1000Prime Reports (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José Román Bilbao-Castro
    • 1
  • Gabriel Barrionuevo
    • 1
  • Dolores Ruiz-Lupión
    • 2
  • Leocadio G. Casado
    • 1
  • Jordi Moya-Laraño
    • 2
  1. 1.Department of InformaticsUniversity of Almería (Campus de Excelencia Internacional Agroalimentario, CEiA3)AlmeríaSpain
  2. 2.Department of Functional and Evolutionary EcologyEstación Experimental de Zonas Áridas, EEZA-CSICAlmeríaSpain

Personalised recommendations