Evaluation of the Dynamic Construct Competition Miner for an eHealth System

  • David Redlich
  • Mykola Galushka
  • Thomas Molka
  • Wasif Gilani
  • Gordon Blair
  • Awais Rashid
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 208)

Abstract

Business processes of some domains are highly dynamic and increasingly complex due to their dependencies on a multitude of services provided by various providers. The quality of services directly impacts the business process’s efficiency. A first prerequisite for any optimization initiative requires a better understanding of the deployed business processes. However, the business processes are either not documented at all or are only poorly documented. Since the actual behaviour of the business processes and underlying services can change over time it is required to detect the dynamically changing behaviour in order to carry out correct analyses. This paper presents and evaluates the integration of the Dynamic Construct Competition Miner (DCCM) as process monitor in the TIMBUS architecture. The DCCM discovers business processes and recognizes changes directly from an event stream at run-time. The evaluation is carried out in the context of an industrial use-case from the eHealth domain. We will describe the key aspects of the use-case and the DCCM as well as present the relevant evaluation results.

Keywords

Business process management Process discovery Enterprise architecture Complex event processing eHealth 

Notes

Acknowledgments

Project partially funded by the European Commission under the 7th Framework Programme for research and technological development and demonstration activities under grant agreement 269940, TIMBUS project (http://timbusproject.net/).

References

  1. 1.
    Antunes, G., Caetano, A., Bakhshandeh, M., Mayer, R., Borbinha, J.: Using ontologies to integrate multiple enterprise architecture domains. In: Abramowicz, W. (ed.) BIS Workshops 2013. LNBIP, vol. 160, pp. 61–72. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Butt, T., Cox, A., Oyebode, J., Ferner, R.: Internet accounts of serious adverse drug reactions a study of experiences of Stevens-Johnson syndrome and toxic epidermal necrolysis. Drug Saf. 35(12), 1159–1170 (2012)CrossRefGoogle Scholar
  3. 3.
    Galushka, M., Gilani, W.: DrugFusion - retrieval knowledge management for prediction of adverse drug events. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 13–24. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Galushka, M., Taylor, P., Gilani, W., Thomson, J., Strodl, S., Neumann, M.: Digital preservation of business processes with TIMBUS architecture. In: Proceedings of 9th International Conference on Preservation of Digital Objects IPRES2012, pp. 117–125 (2012)Google Scholar
  5. 5.
    Gilani, W., Redlich, D., Galushka, M., Molka, T., Du, Y.: TIMBUS: Digital preservation for timeless business processes and services. In: 23rd Proceedings of eChallenges Conference (e-2013) (2013)Google Scholar
  6. 6.
    Huang, Y., Lin, S., Chiu, C., Yeh, H., Soo, V.: Probability analysis on associations of adverse drug events with drug-drug interactions. In: BIBE 2007, pp. 1308–1312 (2007)Google Scholar
  7. 7.
    Jin, H., Chen, J., He, H., Kelman, C., McAullay, D., O’Keefe, C.: signaling potential adverse drug reactions from administrative health databases. IEEE Trans. Knowl. Data Eng. 22(6), 839–853 (2010)CrossRefGoogle Scholar
  8. 8.
    Jin, H., Chen, J., He, H., Williams, G., Kelman, C., O’Keefe, C.: Mining unexpected temporal associations: applications in detecting adverse drug reactions. IEEE Trans. Inf. Technol. Biomed. 12(4), 488–500 (2008)CrossRefGoogle Scholar
  9. 9.
    Ji, Y., Ying, H., Dews, P., Mansour, A., Tran, J., Miller, R., Massanari, R.M.: A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Trans. Inf. Technol. Biomed. 15(3), 428–437 (2011)CrossRefGoogle Scholar
  10. 10.
    Ko, R.K.L.: A computer scientist’s introductory guide to business process management (BPM). Crossroads J., ACM 15(4), 4 (2009)Google Scholar
  11. 11.
    Koutkias, V., Kilintzis, V., Stalidis, G., Lazou, K., Nis, J., Durand-Texte, L., McNair, P., Beuscart, R., Maglaveras, N.: Knowledge engineering for adverse drug event prevention: on the design and development of a uniform, contextualized and sustainable knowledge-based framework. J. Biomed. Inf. 45(3), 495–506 (2012)CrossRefGoogle Scholar
  12. 12.
    Krska, J., Cox, A.: Adverse drug reactions. Clin. Pharmacol. Ther. 91, 467–474 (2012)CrossRefGoogle Scholar
  13. 13.
    Luckham, D.: The Power of Events: An Introduction to Complex Event Processing. Addison-Wesley Professional, Reading (2002)Google Scholar
  14. 14.
    Molka, T., Redlich, D., Drobek, M., Zeng, X.-J., Gilani, W.: Diversity guided evolutionary mining of hierarchical process models. In: Genetic and Evolutionary Computation Conference (GECCO 2015), ACM (2015) http://dx.doi.org/10.1145/2739480.2754765
  15. 15.
    Rao, S., Gupta, R.: Implementing improved algorithm over APRIORI data mining association rule algorithm. Int. J Comput. Sci. Technol. 1, 489–493 (2012)Google Scholar
  16. 16.
    Redlich, D., Molka, T., Gilani, W., Blair, G., Rashid, A.: Constructs competition miner: process control-flow discovery of BP-domain constructs. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 134–150. Springer, Heidelberg (2014) Google Scholar
  17. 17.
    Redlich, D., Molka, T., Blair, G., Rashid, A., Gilani, W.: Scalable dynamic business process discovery with the constructs competition miner. In: Proceedings of the 4th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2014), CEUR 1293, pp. 91–107 (2014)Google Scholar
  18. 18.
    Van Der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  19. 19.
    Van Der Aalst, W.: Process Mining - Discovery Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011) MATHGoogle Scholar
  20. 20.
    Weijters, A., Van Der Aalst, W., de Medeiros, A.A.: Process Mining with the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Redlich
    • 1
    • 2
  • Mykola Galushka
    • 2
  • Thomas Molka
    • 2
  • Wasif Gilani
    • 2
  • Gordon Blair
    • 1
  • Awais Rashid
    • 1
  1. 1.Lancaster UniversityBelfastUK
  2. 2.SAP Research Centre BelfastBelfastUK

Personalised recommendations