Nonlinear Optical and Atomic Systems pp 147-273 | Cite as

# Orbital Stability: Analysis Meets Geometry

## Abstract

We present an introduction to the orbital stability of relative equilibria of Hamiltonian dynamical systems on (finite and infinite dimensional) Banach spaces. A convenient formulation of the theory of Hamiltonian dynamics with symmetry and the corresponding momentum maps is proposed that allows us to highlight the interplay between (symplectic) geometry and (functional) analysis in the proofs of orbital stability of relative equilibria via the so-called energy-momentum method. The theory is illustrated with examples from finite dimensional systems, as well as from Hamiltonian PDE’s, such as solitons, standing and plane waves for the nonlinear Schrödinger equation, for the wave equation, and for the Manakov system.

## References

- 1.M.J. Ablowitz, P.A. Clarkson,
*Solitons, Nonlinear Evolution Equations and Inverse Scattering*. London Mathematical Society Lecture Note Series, vol. 149 (Cambridge University Press, Cambridge, 1991). doi:10.1017/CBO9780511623998. http://dx.doi.org/10.1017/CBO9780511623998 - 2.R. Abraham, J.E. Marsden,
*Foundations of Mechanics*, 2nd edn. (Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, 1978) [Revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman]Google Scholar - 3.R. Adami, D. Noja, Stability and symmetry-breaking bifurcation for the ground states of a NLS with a
*δ*′ interaction. Commun. Math. Phys.**318**(1), 247–289 (2013). doi:10.1007/s00220-012-1597-6. http://dx.doi.org/10.1007/s00220-012-1597-6 - 4.R. Adami, C. Cacciapuoti, D. Finco, D. Noja, Variational properties and orbital stability of standing waves for NLS equation on a star graph. J. Differ. Equ.
**257**(10), 3738–3777 (2014). doi:10.1016/j.jde.2014.07.008. http://dx.doi.org/10.1016/j.jde.2014.07.008 - 5.J. Angulo Pava,
*Nonlinear Dispersive Equations*. Mathematical Surveys and Monographs, vol. 156 (American Mathematical Society, Providence, 2009). doi:10.1090/surv/156. http://dx.doi.org/10.1090/surv/156 [Existence and stability of solitary and periodic travelling wave solutions] - 6.V.I. Arnold, Mathematical methods of classical mechanics, in
*Graduate Texts in Mathematics*, vol. 60 (Springer, New York, 1978) [Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition]CrossRefGoogle Scholar - 7.M.S. Baouendi, P. Ebenfelt, L.P. Rothschild,
*Real Submanifolds in Complex Space and Their Mappings*. Princeton Mathematical Series (Princeton University Press, Princeton, 1999)zbMATHGoogle Scholar - 8.T.B. Benjamin, The stability of solitary waves. Proc. R. Soc. Lond. Ser. A
**328**, 153–183 (1972)MathSciNetCrossRefGoogle Scholar - 9.H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal.
**82**(4), 313–345 (1983). doi:10.1007/BF00250555. http://dx.doi.org/10.1007/BF00250555 - 10.J. Bona, On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A
**344**(1638), 363–374 (1975)MathSciNetCrossRefzbMATHGoogle Scholar - 11.J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type. Proc. R. Soc. Lond. Ser. A
**411**(1841), 395–412 (1987)MathSciNetCrossRefzbMATHGoogle Scholar - 12.J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations. Geom. Funct. Anal.
**3**(2), 107–156 (1993)MathSciNetCrossRefzbMATHGoogle Scholar - 13.J. Boussinesq,
*Essai sur la Théorie des Eaux Courantes*(Imprimerie National, Paris, 1877)zbMATHGoogle Scholar - 14.B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal.
**173**(1), 25–68 (2004). doi:10.1007/s00205-004-0310-0. http://dx.doi.org/10.1007/s00205-004-0310-0 - 15.B. Buffoni, M.D. Groves, S.M. Sun, E. Wahlén, Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves. J. Differ. Equ.
**254**(3), 1006–1096 (2013). doi:10.1016/j.jde.2012.10.007. http://dx.doi.org/10.1016/j.jde.2012.10.007 - 16.T. Cazenave, Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal.
**7**(10), 1127–1140 (1983). doi:10.1016/0362-546X(83)90022-6. http://dx.doi.org/10.1016/0362-546X(83)90022-6 - 17.T. Cazenave,
*Semilinear Schrödinger Equations*. Courant Lecture Notes (American Mathematical Society, Providence, 2003)zbMATHGoogle Scholar - 18.T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys.
**85**, 549–561 (1982)MathSciNetCrossRefzbMATHGoogle Scholar - 19.P.R. Chernoff, J.E. Marsden,
*Properties of Infinite Dimensional Hamiltonian Systems*. Lecture Notes in Mathematics, vol. 425 (Springer, Berlin, 1974)Google Scholar - 20.E.A. Coddington, N. Levinson,
*Theory of Ordinary Differential Equations*(McGraw-Hill, New York, 1955)zbMATHGoogle Scholar - 21.M. Colin, L. Jeanjean, M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity
**23**(6), 1353–1385 (2010). doi:10.1088/0951-7715/23/6/006. http://dx.doi.org/10.1088/0951-7715/23/6/006 - 22.A. Comech, D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy. Commun. Pure Appl. Math.
**56**(11), 1565–1607 (2003). doi:10.1002/cpa.10104. http://dx.doi.org/10.1002/cpa.10104 - 23.A. Constantin, L. Molinet, Orbital stability of solitary waves for a shallow water equation. Phys. D
**157**(1–2), 75–89 (2001). doi:10.1016/S0167-2789(01)00298-6. http://dx.doi.org/10.1016/S0167-2789(01)00298-6 - 24.A. Constantin, W.A. Strauss, Stability of peakons. Commun. Pure Appl. Math.
**53**(5), 603–610 (2000). doi:10.1002/(SICI)1097-0312(200005)53:5¡603::AID-CPA3¿3.3.CO;2-C. http://dx.doi.org/10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C - 25.A. Constantin, W.A. Strauss, Stability properties of steady water waves with vorticity. Commun. Pure Appl. Math.
**60**(6), 911–950 (2007). doi:10.1002/cpa.20165. http://dx.doi.org/10.1002/cpa.20165 - 26.S. Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations, in
*Dispersive Nonlinear Problems in Mathematical Physics*. Quad. Mat., vol. 15 (Seconda Univ. Napoli, Caserta, 2004), pp. 21–57Google Scholar - 27.S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states. Commun. Math. Phys.
**305**(2), 279–331 (2011). doi:10.1007/s00220-011-1265-2. http://dx.doi.org/10.1007/s00220-011-1265-2 - 28.S. Cuccagna, D.E. Pelinovsky, The asymptotic stability of solitons in the cubic NLS equation on the line. Appl. Anal.
**93**(4), 791–822 (2014). doi:10.1080/00036811.2013.866227. http://dx.doi.org/10.1080/00036811.2013.866227 - 29.S. De Bièvre, S. Rota Nodari, Orbital stability of plane wave solutions of periodic nonlinear Schrödinger and Manakov equations (in preparation)Google Scholar
- 30.A. De Bouard, R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Ann. Henri Poincaré
**6**(6), 1157–1177 (2005). doi:10.1007/s00023-005-0236-6. http://dx.doi.org/10.1007/s00023-005-0236-6 - 31.M. Duflo, M. Vergne, Une propriété de la représentation coadjointe d’une algèbre de Lie. C. R. Acad. Sci. Paris
**268**(A), 583–585 (1969)MathSciNetzbMATHGoogle Scholar - 32.N. Duruk Mutlubaş, A. Geyer, Orbital stability of solitary waves of moderate amplitude in shallow water. J. Differ. Equ.
**255**(2), 254–263 (2013). doi:10.1016/j.jde.2013.04.010. http://dx.doi.org/10.1016/j.jde.2013.04.010 - 33.M. Ehrnström, M.D. Groves, E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type. Nonlinearity
**25**(10), 2903–2936 (2012). doi:10.1088/0951-7715/25/10/2903. http://dx.doi.org/10.1088/0951-7715/25/10/2903 - 34.E. Faou, L. Gauckler, C. Lubich, Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus. Commun. Partial Differ. Equ.
**38**(7), 1123–1140 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 35.E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940 (1955)Google Scholar
- 36.G. Fibich, X.P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Phys. D
**175**(1–2), 96–108 (2003). doi:10.1016/S0167-2789(02)00626-7. http://dx.doi.org/10.1016/S0167-2789(02)00626-7 - 37.G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. École Norm. Sup. [2]
**12**, 47–88 (1883)Google Scholar - 38.R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials. Adv. Differ. Equ.
**10**(3), 259–276 (2005)MathSciNetzbMATHGoogle Scholar - 39.R. Fukuizumi, M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials. Differ. Integr. Equ.
**16**(1), 111–128 (2003)MathSciNetzbMATHGoogle Scholar - 40.T. Gallay, M. Hărăgus, Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Differ. Equ.
**19**(4), 825–865 (2007)CrossRefzbMATHGoogle Scholar - 41.T. Gallay, M. Hărăgus, Stability of small periodic waves for the nonlinear Schrödinger equation. J. Differ. Equ.
**234**(2), 544–581 (2007)CrossRefzbMATHGoogle Scholar - 42.C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett.
**19**(19), 1095 (1967)Google Scholar - 43.M. Gazeau, Analyse de modèles mathématiques pour la propagation de la lumière dans les fibres optiques en présence de biréfringence aléatoire. Ph.D. thesis, École Polytechnique (2012)Google Scholar
- 44.F. Genoud, Existence and orbital stability of standing waves for some nonlinear Schrödinger equations, perturbation of a model case. J. Differ. Equ.
**246**, 1921–1943 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 45.F. Genoud, Bifurcation and stability of travelling waves in self-focusing planar waveguides. Adv. Nonlinear Stud.
**10**, 357–400 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 46.F. Genoud, A smooth global branch of solutions for a semilinear elliptic equation on \(\mathbb{R}^{n}\). Calc. Var. Partial Differ. Equ.
**38**, 207–232 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 47.F. Genoud, Bifurcation from infinity for an asymptotically linear problem on the half-line. Nonlinear Anal.
**74**, 4533–4543 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 48.F. Genoud, Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evol. Equ. Control Theory
**2**, 81–100 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 49.F. Genoud, C.A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin. Dyn. Syst.
**21**, 137–186 (2008)MathSciNetCrossRefzbMATHGoogle Scholar - 50.H. Goldstein,
*Classical Mechanics*. Addison-Wesley Series in Physics, 2nd edn. (Addison-Wesley, Reading, 1980)Google Scholar - 51.M. Grillakis, Linearized instability for nonlinear Schrödinger and Klein-Gordon equations. Commun. Pure Appl. Math.
**41**(6), 747–774 (1988). doi:10.1002/cpa.3160410602. http://dx.doi.org/10.1002/cpa.3160410602 - 52.M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system. Commun. Pure Appl. Math.
**43**(3), 299–333 (1990). doi:10.1002/cpa.3160430302. http://dx.doi.org/10.1002/cpa.3160430302 - 53.M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal.
**74**(1), 160–197 (1987). doi:10.1016/0022-1236(87)90044-9. http://dx.doi.org/10.1016/0022-1236(87)90044-9 - 54.M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal.
**94**(2), 308–348 (1990). doi:10.1016/0022-1236(90)90016-E. http://dx.doi.org/10.1016/0022-1236(90)90016-E - 55.H. Hajaiej, C.A. Stuart, On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation. Adv. Nonlinear Stud.
**4**, 469–501 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 56.L. Jeanjean, S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations. Adv. Differ. Equ.
**11**(7), 813–840 (2006)zbMATHGoogle Scholar - 57.C.K.R.T. Jones, Instability of standing waves for nonlinear Schrödinger-type equations. Ergodic Theory Dyn. Syst.
**8**^{∗}(Charles Conley Memorial Issue), 119–138 (1988). doi:10.1017/S014338570000938X. http://dx.doi.org/10.1017/S014338570000938X - 58.C.K.R.T. Jones, J.V. Moloney, Instability of standing waves in nonlinear optical waveguides. Phys. Lett. A
**117**(4), 175–180 (1986). doi:http://dx.doi.org/10.1016/0375-9601(86)90734-6. http://www.sciencedirect.com/science/article/pii/0375960186907346 - 59.E. Kirr, A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases. J. Differ. Equ.
**247**(3), 710–735 (2009). doi:10.1016/j.jde.2009.04.015. http://dx.doi.org/10.1016/j.jde.2009.04.015 - 60.C. Klein, J.C. Saut, IST versus PDE, a comparative study (2014). http://arxiv.org/abs/1409.2020
- 61.D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag.
**39**, 422–443 (1895)CrossRefzbMATHGoogle Scholar - 62.P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math.
**21**(5), 467–490 (1968)MathSciNetCrossRefzbMATHGoogle Scholar - 63.S. Le Coz, Standing waves in nonlinear Schrödinger equations, in
*Analytical and Numerical Aspects of Partial Differential Equations*(Walter de Gruyter, Berlin, 2009), pp. 151–192zbMATHGoogle Scholar - 64.S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim, Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Phys. D
**237**(8), 1103–1128 (2008). doi:10.1016/j.physd.2007.12.004. http://dx.doi.org/10.1016/j.physd.2007.12.004 - 65.M. Lemou, F. Méhats, P. Raphaël, Orbital stability of spherical galactic models. Invent. Math.
**187**(1), 145–194 (2012). doi:10.1007/s00222-011-0332-9. http://dx.doi.org/10.1007/s00222-011-0332-9 - 66.E.M. Lerman, S.F. Singer, Stability and persistence of relative equilibria at singular values of the moment map. Nonlinearity
**11**(6), 1637–1649 (1998). doi:10.1088/0951-7715/11/6/012. http://dx.doi.org/10.1088/0951-7715/11/6/012 - 67.P. Libermann, C.M. Marle,
*Symplectic Geometry and Analytical Mechanics*. Mathematics and Its Applications, vol. 35 (D. Reidel Publishing Co., Dordrecht, 1987). doi:10.1007/978-94-009-3807-6. http://dx.doi.org/10.1007/978-94-009-3807-6 [Translated from the French by Bertram Eugene Schwarzbach] - 68.P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire
**1**(2), 109–145 (1984). http://www.numdam.org/item?id=AIHPC_1984__1_2_109_0 - 69.A.M. Lyapunov,
*Problème Général de la Stabilité du Mouvement*(Princeton University Press, Princeton, 1952) [French translation of the original manuscript published in Russian by the Mathematical Society of Kharkov in 1892]Google Scholar - 70.M. Maeda, Stability and instability of standing waves for 1-dimensional nonlinear Schrödinger equation with multiple-power nonlinearity. Kodai Math. J.
**31**(2), 263–271 (2008). doi:10.2996/kmj/1214442798. http://dx.doi.org/10.2996/kmj/1214442798 - 71.M. Maeda, Stability of bound states of Hamiltonian PDEs in the degenerate cases. J. Funct. Anal.
**263**(2), 511–528 (2012). doi:10.1016/j.jfa.2012.04.006. http://dx.doi.org/10.1016/j.jfa.2012.04.006 - 72.A.I. Maimistov, Solitons in nonlinear optics. Quantum Electron.
**40**(9), 756–781 (2010)CrossRefGoogle Scholar - 73.S.V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP
**38**(2), 248–253 (1974)MathSciNetGoogle Scholar - 74.J.E. Marsden, T.S. Ratiu,
*Introduction to Mechanics and Symmetry*. Texts in Applied Mathematics, vol. 17 (Springer, New York, 1994). doi:10.1007/978-1-4612-2682-6. http://dx.doi.org/10.1007/978-1-4612-2682-6 [A basic exposition of classical mechanical systems] - 75.Y. Martel, F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal.
**157**(3), 219–254 (2001). doi:10.1007/s002050100138. http://dx.doi.org/10.1007/s002050100138 - 76.Y. Martel, F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity
**18**(1), 55–80 (2005). doi:10.1088/0951-7715/18/1/004. http://dx.doi.org/10.1088/0951-7715/18/1/004 - 77.Y. Martel, F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity. Math. Ann.
**341**(2), 391–427 (2008). doi:10.1007/s00208-007-0194-z. http://dx.doi.org/10.1007/s00208-007-0194-z - 78.Y. Martel, F. Merle, T.P. Tsai, Stability and asymptotic stability in the energy space of the sum of
*N*solitons for subcritical gKdV equations. Commun. Math. Phys.**231**(2), 347–373 (2002). doi:10.1007/s00220-002-0723-2. http://dx.doi.org/10.1007/s00220-002-0723-2 - 79.Y. Martel, F. Merle, T.P. Tsai, Stability in
*H*^{1}of the sum of*K*solitary waves for some nonlinear Schrödinger equations. Duke Math. J.**133**(3), 405–466 (2006). doi:10.1215/S0012-7094-06-13331-8. http://dx.doi.org/10.1215/S0012-7094-06-13331-8 - 80.J. Montaldi, Persistence and stability of relative equilibria. Nonlinearity
**10**(2), 449–466 (1997). doi:10.1088/0951-7715/10/2/009. http://dx.doi.org/10.1088/0951-7715/10/2/009 - 81.J. Montaldi, M. Rodríguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy. Nonlinearity
**24**(10), 2777–2783 (2011). doi:10.1088/0951-7715/24/10/007. http://dx.doi.org/10.1088/0951-7715/24/10/007 - 82.M. Ohta, Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity. Kodai Math. J.
**18**(1), 68–74 (1995). doi:10.2996/kmj/1138043354. http://dx.doi.org/10.2996/kmj/1138043354 - 83.J.P. Ortega, T.S. Ratiu, Stability of Hamiltonian relative equilibria. Nonlinearity
**12**(3), 693–720 (1999). doi:10.1088/0951-7715/12/3/315. http://dx.doi.org/10.1088/0951-7715/12/3/315 - 84.G.W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space. J. Geom. Phys.
**9**(2), 111–119 (1992). doi:10.1016/0393-0440(92)90015-S. http://dx.doi.org/10.1016/0393-0440(92)90015-S - 85.G.W. Patrick, M. Roberts, C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods. Arch. Ration. Mech. Anal.
**174**(3), 301–344 (2004). doi:10.1007/s00205-004-0322-9. http://dx.doi.org/10.1007/s00205-004-0322-9 - 86.R.L. Pego, M.I. Weinstein, Asymptotic stability of solitary waves. Commun. Math. Phys.
**164**(2), 305–349 (1994). http://projecteuclid.org/euclid.cmp/1104270835 - 87.H. Poincaré,
*Les Méthodes Nouvelles de la Mécanique Céleste, Tome I*(Gauthier-Villars et Fils, Paris, 1892)zbMATHGoogle Scholar - 88.M. Roberts, T. Schmah, C. Stoica, Relative equilibria in systems with configuration space isotropy. J. Geom. Phys.
**56**(5), 762–779 (2006). doi:10.1016/j.geomphys.2005.04.017. http://dx.doi.org/10.1016/j.geomphys.2005.04.017 - 89.A. Shabat, V. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP
**34**, 62–69 (1972)MathSciNetGoogle Scholar - 90.J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations. Commun. Math. Phys.
**91**(3), 313–327 (1983). http://projecteuclid.org/euclid.cmp/1103940612 - 91.J. Shatah, W. Strauss, Instability of nonlinear bound states. Commun. Math. Phys.
**100**(2), 173–190 (1985). http://projecteuclid.org/euclid.cmp/1103943442 - 92.A. Soffer, Soliton dynamics and scattering, in
*International Congress of Mathematicians*, vol. 3 (Eur. Math. Soc., Zürich, 2006), pp. 459–471zbMATHGoogle Scholar - 93.A. Soffer, M.I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations. Commun. Math. Phys.
**133**(1), 119–146 (1990). http://projecteuclid.org/euclid.cmp/1104201318 - 94.A. Soffer, M.I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data. J. Differ. Equ.
**98**(2), 376–390 (1992). doi:10.1016/0022-0396(92)90098-8. http://dx.doi.org/10.1016/0022-0396(92)90098-8 - 95.J.M. Souriau,
*Structure of Dynamical Systems: A Symplectic View of Physics*. Progress in Mathematics, vol. 149 (Springer, New York, 1997)Google Scholar - 96.M. Spivak,
*A Comprehensive Introduction to Differential Geometry*, vol. 1, 2nd edn. (Publish or Perish Inc., Wilmington, 1979)Google Scholar - 97.W.A. Strauss, Existence of solitary waves in higher dimensions. Commun. Math. Phys.
**55**(2), 149–162 (1977)CrossRefMathSciNetzbMATHGoogle Scholar - 98.C.A. Stuart, An introduction to elliptic equations on \(\mathbb{R}^{n}\), in
*Nonlinear Functional Analysis and Applications to Differential Equations (Trieste, 1997)*(World Science, River Edge, 1998), pp. 237–285Google Scholar - 99.C.A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation. Milan J. Math.
**76**, 329–399 (2008)MathSciNetCrossRefzbMATHGoogle Scholar - 100.C. Sulem, P.L. Sulem,
*The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse*. (Springer, New York, 1999)Google Scholar - 101.T. Tao,
*Nonlinear Dispersive Equations. Local and Global Analysis*. CBMS Regional Conf. Ser. Math. (American Mathematical Society, Providence, 2006)Google Scholar - 102.T. Tao, Why are solitons stable? Bull. Am. Math. Soc.
**46**(1), 1–33 (2009)CrossRefMathSciNetzbMATHGoogle Scholar - 103.N. Vakhitov, A.A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron.
**16**(1973)Google Scholar - 104.M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math.
**39**(1), 51–67 (1986)CrossRefMathSciNetzbMATHGoogle Scholar - 105.N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.
**15**(6), 240–243 (1965)CrossRefzbMATHGoogle Scholar - 106.P.E. Zhidkov,
*Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory*. Lecture Notes in Mathematics (Springer, Heidelberg, 2001)Google Scholar