Specialist Neurons in Feature Extraction Are Responsible for Pattern Recognition Process in Insect Olfaction

  • Aaron Montero
  • Ramon Huerta
  • Francisco B. Rodriguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9107)


In the olfactory system we can observe two types of neurons based on their responses to odorants. Specialist neurons react to a few odorants, while generalist neurons respond to a wide range of them. These kinds of neurons can be observed in different parts of the olfactory system. In the antennal lobe (AL), these neurons encode odorant information and in the extrinsic neurons (ENs) of the mushroom bodies (MB) they can learn and identify different kind of odorants based on the selective and generalist response. The classification of specialists and generalists neurons in Kenyon cells (KCs), which serve as a bridge between AL and ENs, may seem arbitrary. However KCs have the unique mission of increasing the separability between different odorants, to achieve a better information processing performance. To carry out this function, the connections between the antennal lobe and Kenyon cells do not require a specific connectivity pattern. Since KCs can be specialists or generalists by chance and olfactory learning performance relies on their feature extraction capabilities, we analyze the role of generalist and specialist neurons in an olfactory discrimination task. Role that we studied by varying the percentage of these two kind of neurons in KC layer. We determined that specialist neurons are a decisive factor to perform optimal odorant classification.


Pattern recognition Specialist neuron Generalist neuron Olfactory system Neural variability Supervised learning Heterogeneous threshold Lateral inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazhenov, M., Huerta, R., Smith, B.H.: A computational framework for understanding decision making through integration of basic learning rules. The Journal of Neuroscience 33(13), 5686–5697 (2013)CrossRefGoogle Scholar
  2. 2.
    Campbell, R.A.A., Honegger, K.S., Qin, H., Li, W., Demir, E., Turner, G.C.: Imaging a population code for odor identity in the drosophila mushroom body. The Journal of NeuroscienceSPIE Proc. 33(25), 10568–10581 (2013)Google Scholar
  3. 3.
    Chandra, S.B., Wright, G.A., Smith, B.H.: Latent inhibition in the in the honeybee, apis mellifera: is it a unitary phenomenon? Anim Cogn. 13, 805–815 (2010)CrossRefGoogle Scholar
  4. 4.
    Christensen, T.A.: Making scents out of spatial and temporal codes in specialist and generalist olfactory networks. Chem. Senses 30, 283–284 (2005)CrossRefGoogle Scholar
  5. 5.
    Dubnau, J., Grady, L., Kitamoto, T., Tully, T.: Disruption of neurotransmission in drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411(6836), 476–480 (2001)CrossRefGoogle Scholar
  6. 6.
    Garcia-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory systems. J. Comput. Neurosci. 15, 5–17 (2003)CrossRefGoogle Scholar
  7. 7.
    Gruntman, E., Turner, G.C.: Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nature Neuroscience 16, 1821–1829 (2013)CrossRefGoogle Scholar
  8. 8.
    Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: Explorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kaupp, U.B.: Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews Neuroscience 11, 188–200 (2010)Google Scholar
  11. 11.
    LeCun, Y., Cortes, C.: Mnist database (1998),
  12. 12.
    Leitch, B., Laurent, G.: GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372, 487–514 (1996)CrossRefGoogle Scholar
  13. 13.
    Lubow, R.E.: Latent inhibition. Psychol Bull. 79, 398–407 (1973)CrossRefGoogle Scholar
  14. 14.
    Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)CrossRefGoogle Scholar
  15. 15.
    Montero, A., Huerta, R., Rodriguez, F.B.: Neuron threshold variability in an olfactory model improves odorant discrimination. In: Natural and Artificial Models in Computation and Biology - 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2013, Proceedings, Part I, Mallorca, Spain, June 10-14, pp. 16–25 (2013)Google Scholar
  16. 16.
    Montero, A., Huerta, R., Rodriguez, F.B.: Neural trade-offs among specialist and generalist neurons in pattern recognition. In: Proceedings of the Engineering Applications of Neural Networks - 15th International Conference, EANN 2014, Sofia, Bulgaria, September 5-7, pp. 71–80 (2014)Google Scholar
  17. 17.
    Montero, A., Huerta, R., Rodriguez, F.B.: Regulation of specialists and generalists by neural variability improves pattern recognition performance. Neurocomputing 151, 69–77 (2015)CrossRefGoogle Scholar
  18. 18.
    Olsen, S.R., Wilson, R.I.: Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452(7190), 956–960 (2008)CrossRefGoogle Scholar
  19. 19.
    Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)CrossRefGoogle Scholar
  20. 20.
    Rodríguez, F.B., Huerta, R.: Techniques for temporal detection of neural sensitivity to external stimulation. Biol. Cybern. 100(4), 289–297 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rodríguez, F.B., Huerta, R., Aylwin, M.: Neural sensitivity to odorants in deprived and normal olfactory bulbs. PLoS ONE 8(4) (2013)Google Scholar
  22. 22.
    Salinas, E., Thier, P.: Gain modulation: A major computational principle of the central nervous system. Neuron 27, 15–21 (2000)CrossRefGoogle Scholar
  23. 23.
    Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network conditions in early sensory coding. PLoS Computational Biology 9(7) (2013)Google Scholar
  24. 24.
    Tanaka, N.K., Awasaki, T., Shimada, T., Ito, K.: Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449–457 (2004)CrossRefGoogle Scholar
  25. 25.
    Wilson, R.I., Turner, G.C., Laurent, G.: Transformation of olfactory representations in the drosophila antennal lobe. Science 303(5656), 366–370 (2004)CrossRefGoogle Scholar
  26. 26.
    Zavada, A., Buckley, C.L., Martinez, D., Rospars, J.-P., Nowotny, T.: Competition-based model of pheromone component ratio detection in the moth. PLoS One 6(2), e16308 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aaron Montero
    • 1
  • Ramon Huerta
    • 1
    • 2
  • Francisco B. Rodriguez
    • 1
  1. 1.Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  2. 2.BioCircuits InstituteUniversity of CaliforniaSan DiegoUSA

Personalised recommendations