Towards a Generic Simulation Tool of Retina Models

  • Pablo Martínez-Cañada
  • Christian Morillas
  • Begoña Pino
  • Francisco Pelayo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9107)


The retina is one of the most extensively studied neural circuits in the Visual System. Numerous models have been proposed to predict its neural behavior on the response to artificial and natural visual patterns. These models can be considered an important tool for understanding the underlying biophysical and anatomical mechanisms. This paper describes a general-purpose simulation environment that fits to different retina models and provides a set of elementary simulation modules at multiple abstraction levels. The platform can simulate many of the biological mechanisms found in retinal cells, such as signal gathering though chemical synapses and gap junctions, variations in the receptive field size with eccentricity, membrane integration by linear and single-compartment models and short-term synaptic plasticity. A built-in interface with neural network simulators reproduces the spiking output of some specific cells, such as ganglion cells, and allows integration of the platform with models of higher visual areas. We used this software to implement whole retina models, from photoreceptors up to ganglion cells, that reproduce contrast adaptation and color opponency mechanisms in the retina. These models were fitted to published electro-physiological data to show the potential of this tool to generalize and adapt itself to a wide range of retina models.


Retina simulator Contrast adaptation Color opponency Neural network Spikes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2), 150–164 (2010)CrossRefGoogle Scholar
  2. 2.
    Lee, B.B., Martin, P.R., Grünert, U.: Retinal connectivity and primate vision. Progress in Retinal and Eye Research 29(6), 622–639 (2010)CrossRefGoogle Scholar
  3. 3.
    Beeman, D.: History of neural simulation software. In: 20 Years of Computational Neuroscience, pp. 33–71. Springer (2013)Google Scholar
  4. 4.
    Gewaltig, M.-O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  5. 5.
    Hines, M.L., Carnevale, N.T.: The neuron simulation environment. Neural Computation 9(6), 1179–1209 (1997)CrossRefGoogle Scholar
  6. 6.
    Benoit, A., Caplier, A., Durette, B., Hérault, J.: Using human visual system modeling for bio-inspired low level image processing. Computer Vision and Image Understanding 114(7), 758–773 (2010)CrossRefGoogle Scholar
  7. 7.
    Wohrer, A., Kornprobst, P.: Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26(2), 219–249 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hérault, J., Durette, B.: Modeling visual perception for image processing. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 662–675. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Ros, E., Fernández, E.: A design framework to model retinas. Biosystems 87(2), 156–163 (2007)CrossRefGoogle Scholar
  10. 10.
    Hérault, J.: A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 12(2), 113–129 (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    De Valois, R.L., De Valois, K.K.: A multi-stage color model. Vision research 33(8), 1053–1065 (1993)CrossRefGoogle Scholar
  12. 12.
    Andreou, A.G., Boahen, K.A.: A contrast sensitive silicon retina with reciprocal synapses. Advances in Neural Information Processing Systems (NIPS) 4, 764–772 (1991)Google Scholar
  13. 13.
    Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE 78(10), 1629–1636 (1990)CrossRefGoogle Scholar
  14. 14.
    Ozuysal, Y., Baccus, S.A.: Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73(5), 1002–1015 (2012)CrossRefGoogle Scholar
  15. 15.
    Mante, V., Frazor, R.A., Bonin, V., Geisler, W.S., Carandini, M.: Independence of luminance and contrast in natural scenes and in the early visual system. Nature Neuroscience 8(12), 1690–1697 (2005)CrossRefGoogle Scholar
  16. 16.
    Baccus, S.A., Meister, M.: Fast and slow contrast adaptation in retinal circuitry. Neuron 36(5), 909–919 (2002)CrossRefGoogle Scholar
  17. 17.
    Kim, K.J., Rieke, F.: Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. The Journal of Neuroscience 21(1), 287–299 (2001)Google Scholar
  18. 18.
    Mante, V., Bonin, V., Carandini, M.: Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58(4), 625–638 (2008)CrossRefGoogle Scholar
  19. 19.
    Kim, K.J., Rieke, F.: Slow na+ inactivation and variance adaptation in salamander retinal ganglion cells. The Journal of Neuroscience 23(4), 1506–1516 (2003)Google Scholar
  20. 20.
    Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5(12), 583–601 (1965)CrossRefGoogle Scholar
  21. 21.
    Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology 187(3), 517–552 (1966)CrossRefGoogle Scholar
  22. 22.
    Dayan, P., Abbott, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. Journal of Cognitive Neuroscience 15(1), 154–155 (2003)CrossRefGoogle Scholar
  23. 23.
    Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity to motion. Proceedings of the Royal Society of London. Series B. Biological Sciences 202(1148), 409–416 (1978)CrossRefGoogle Scholar
  24. 24.
    Amthor, F.R., Grzywacz, N.M.: Nonlinearity of the inhibition underlying retinal directional selectivity. Visual Neuroscience 66(03), 197–206 (1991)CrossRefGoogle Scholar
  25. 25.
    Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of Neuroscience 17(21), 8621–8644 (1997)Google Scholar
  26. 26.
    Wohrer, A.: Model and large-scale simulator of a biological retina, with contrast gain control. PhD thesis, Nice (2008)Google Scholar
  27. 27.
    Beaudoin, D.L., Borghuis, B.G., Demb, J.B.: Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. The Journal of Neuroscience 27(10), 2636–2645 (2007)CrossRefGoogle Scholar
  28. 28.
    Demb, J.B.: Functional circuitry of visual adaptation in the retina. The Journal of Physiology 586(18), 4377–4384 (2008)CrossRefGoogle Scholar
  29. 29.
    Deriche, R.: Recursively implementating the gaussian and its derivatives (1993)Google Scholar
  30. 30.
    Deriche, R.: Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 78–87 (1990)CrossRefGoogle Scholar
  31. 31.
    Tan, S., Dale, J.L., Johnston, A.: Performance of three recursive algorithms for fast space-variant gaussian filtering. Real-Time Imaging 99(3), 215–228 (2003)CrossRefGoogle Scholar
  32. 32.
    Triggs, B., Sdika, M.: Boundary conditions for young-van vliet recursive filtering. IEEE Transactions on Signal Processing 54(6), 2365–2367 (2006)CrossRefGoogle Scholar
  33. 33.
    Rieke, F.: Temporal contrast adaptation in salamander bipolar cells. The Journal of Neuroscience 21(23), 9445–9454 (2001)Google Scholar
  34. 34.
    Jarsky, T., Cembrowski, M., Logan, S.M., Kath, W.L., Riecke, H., Demb, J.B., Singer, J.H.: A synaptic mechanism for retinal adaptation to luminance and contrast. The Journal of Neuroscience 31(30), 11003–11015 (2011)CrossRefGoogle Scholar
  35. 35.
    Dunn, F.A., Rieke, F.: Single-photon absorptions evoke synaptic depression in the retina to extend the operational range of rod vision. Neuron 57(6), 894–904 (2008)CrossRefGoogle Scholar
  36. 36.
    Manookin, M.B., Demb, J.B.: Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50(3), 453–464 (2006)CrossRefGoogle Scholar
  37. 37.
    Zaghloul, K.A., Boahen, K., Demb, J.B.: Contrast adaptation in subthreshold and spiking responses of mammalian y-type retinal ganglion cells. The Journal of Neuroscience 25(4), 860–868 (2005)CrossRefGoogle Scholar
  38. 38.
    Kastner, D.B., Baccus, S.A.: Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nature Neuroscience 14(10), 1317–1322 (2011)CrossRefGoogle Scholar
  39. 39.
    Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B., Dacey, D.M.: Parallel on and off cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29(26), 8372–8387 (2009)CrossRefGoogle Scholar
  40. 40.
    Lee, B.B., Shapley, R.M., Hawken, M.J., Sun, H.: Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. JOSA A 29(2), A223–A232 (2012)Google Scholar
  41. 41.
    Crook, J.D., Manookin, M.B., Packer, O.S., Dacey, D.M.: Horizontal cell feedback without cone type-selective inhibition mediates red–green color opponency in midget ganglion cells of the primate retina. The Journal of Neuroscience 31(5), 1762–1772 (2011)CrossRefGoogle Scholar
  42. 42.
    Lee, B.B., Kremers, J., Yeh, T.: Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience 15(01), 161–175 (1998)CrossRefGoogle Scholar
  43. 43.
    Lee, B.B., Dacey, D.M., Smith, V.C., Pokorny, J.: Horizontal cells reveal cone type-specific adaptation in primate retina. Proceedings of the National Academy of Sciences 96(25), 14611–14616 (1999)CrossRefGoogle Scholar
  44. 44.
    Verweij, J., Hornstein, E.P., Schnapf, J.L.: Surround antagonism in macaque cone photoreceptors. The Journal of Neuroscience 23(32), 10249–10257 (2003)Google Scholar
  45. 45.
    Martínez-Cañada, P., Morillas, C., Nieves, J.L., Pino, B., Pelayo, F.: First stage of a human visual system simulator: The retina. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2015. LNCS, vol. 9016, pp. 118–127. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pablo Martínez-Cañada
    • 1
  • Christian Morillas
    • 1
  • Begoña Pino
    • 1
  • Francisco Pelayo
    • 1
  1. 1.CITIC and Department of Computer Architecture and TechnologyUniversity of GranadaGranadaSpain

Personalised recommendations