Telemetry System for Cochlear Implant Using ASK Modulation and FPGA

  • Ernesto A. Martínez–Rams
  • Vicente Garcerán–Hernández
  • Duarte Juan Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9107)


This paper presents the design, development, simulation and test of a directional telemetry system for cochlear implants using FPGA. We used Manchester codification and ASK modulation in order to achieve a high transmission speed. The design was simulated using the System Generator for FPGA by Xilinx and Simulink developed by Mathworks. Also, the design was emulated using the ISE design software by Xilinx. The design has been tested under noisy environment. The design was optimised so as to obtain a power consumption equal or less than the maximum allowed in the receiver. We achieved the use fewer components of the FPGA. As a result, the telemetry system has been designed to meet with specifications for use it in the development of a prototype of cochlear implant for research purposes.


Field Programmable Gate Array Cochlear Implant Clock Signal Telemetry System Carrier Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garcerán Hernández, V., Martínez Rams, E.A.: Cochlear Implant: Transcutaneous Transmission Link with OFDM. IWINAC (2013)Google Scholar
  2. 2.
    IEEE C95.1. Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz (2005)Google Scholar
  3. 3.
    Jordi, S.R.: Sistema implantable para la estimulación y registro de nervio periférico. Universitat Autónoma de Barcelona. Departament d’Enginyeria Electrónica, Barcelona (2006)Google Scholar
  4. 4.
    Xilinx Inc. System Generator for DSP Reference Guide. EEUU (2011)Google Scholar
  5. 5.
    Xilinx Inc. Xilinx System Generator v2.1 for Simulink Basic Tutorial. EEUU (2013)Google Scholar
  6. 6.
    Ghovanloo, M., Atluri, S.: A Wide-Band Power-Efficient Inductive Wireless Link for Implantable Microelectronic Devices Using Multiple Carriers. IEEE Transactions on Circuits and Systems 54(10), 2211–2221 (2007)CrossRefGoogle Scholar
  7. 7.
    Elamare, G.A.: Investigation of High Bandwidth Biodevices for Transcutaneous Wireless Telemetry. Newcastle University (2010)Google Scholar
  8. 8.
    Svensson, A.: Design of inductive coupling for powering and communication of implantable medical devices. Royal Institute of Technology, Stockholm (2012)Google Scholar
  9. 9.
    Alexandru, N.D.: Improved encoder circuit for inverse differential Manchester code. In: 8th International Conference on Development Application System, pp. 181–183 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ernesto A. Martínez–Rams
    • 1
  • Vicente Garcerán–Hernández
    • 2
  • Duarte Juan Sánchez
    • 3
  1. 1.Universidad de OrienteSantiago de CubaCuba
  2. 2.Universidad Politécnica de CartagenaCartagenaEspańa
  3. 3.Instituto Superior de Ciencias MédicasSantiago de CubaCuba

Personalised recommendations