Advertisement

Towards an Integrated Semantic Framework for Neurological Multidimensional Data Analysis

  • Santiago Timón ReinaEmail author
  • M. Rincón Zamorano
  • Atle Bjørnerud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9107)

Abstract

Medical institutions are increasingly aware of the vast amount of available data they have and its potential benefits. These data are being analyzed and shared at institutions all around the world, however, the way the data are stored, managed and secured need for new technological solutions to facilitate its consumption and sharing between institutions. This situation has become a technological challenge for the interoperability, data mining and Big Data fields. Neuroimaging community is one of the most active in looking for effective solutions, like the XNAT project which aims for neuroimaging data acquisition, management and processing. This paper shows the ongoing effort to develop a Semantic Framework to facilitate multidimensional data analysis based on XNAT architecture.

Keywords

Biomedical Ontology Semantic Framework Disease Ontology Triple Store Ontology Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leifer, B.P.: Early diagnosis of Alzheimer’s disease: clinical and economic benefits. Journal of the American Geriatrics Society (2003)Google Scholar
  2. 2.
    Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1), 262–282 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Computational solutions to large-scale data management and analysis. Nature Reviews Genetics 11(9), 647–657 (2010)CrossRefGoogle Scholar
  4. 4.
    Mejino, J.L., Rubin, D.L., Brinkley, J.F.: FMA-RadLex: An application ontology of radiological anatomy derived from the foundational model of anatomy reference ontology. In: AMIA Annual Symposium Proceedings, pp. 465–469 (January 2008)Google Scholar
  5. 5.
    Mechouche, A., Golbreich, C., Gibaud, B.: Towards an Hybrid System Using an Ontology Enriched by Rules for the Semantic Annotation of Brain MRI Images, pp. 1–10Google Scholar
  6. 6.
    Mechouche, A., Morandi, X., Golbreich, C., Gibaud, B.: A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images. IEEE Transactions on Medical Imaging 28(8), 1165–1178 (2009)CrossRefGoogle Scholar
  7. 7.
    Sonntag, D.: Towards dialogue-based interactive semantic mediation in the medical domain. In: The 7th International Semantic Web Conference (2008)Google Scholar
  8. 8.
    Su, C.-J., Peng, C.W.: Multi-agent ontology-based Web 2.0 platform for medical rehabilitation. Expert Systems with Applications 39(12), 10311–10323 (2012)CrossRefGoogle Scholar
  9. 9.
    Musen, M.A., Noy, N.F.: The national center for biomedical ontology. Journal of the …(2011)Google Scholar
  10. 10.
    Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C., Tudorache, T., Musen, M.A.: BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Research 39(Web Server issue), W541–W545 (2011)Google Scholar
  11. 11.
    Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S.-A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251–1255 (2007)CrossRefGoogle Scholar
  12. 12.
    Doms, A., Schroeder, M.: GoPubMed: exploring PubMed with the gene ontology. Nucleic Acids Research (2005)Google Scholar
  13. 13.
    Gene Ontology Consortium. The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Research (2010)Google Scholar
  14. 14.
    Rosse, C., Mejino, J.V.: A reference ontology for biomedical informatics: the Foundational Model of Anatomy. Journal of Biomedical Informatics 36(6), 478–500 (2003)CrossRefGoogle Scholar
  15. 15.
    Turner, J.A., Mejino, J.V., Brinkley, J.F., Detwiler, L.T., Lee, H.J., Martone, M.E., Rubin, D.L.: Application of neuroanatomical ontologies for neuroimaging data annotation. Frontiers in Neuroinformatics 4, 1–12 (2010)Google Scholar
  16. 16.
    Jyotishman Pathak, R.C.: Kiefer, and CG Chute. Applying linked data principles to represent patient’s electronic health records at Mayo clinic: a case report. In: …Symposium on International Health …, pp. 455–464 (2012)Google Scholar
  17. 17.
    Samwald, M., Jentzsch, A.: Linked open drug data for pharmaceutical research and development. Journal of …(2011)Google Scholar
  18. 18.
    Daniel, S., Marcus, T.R.: Olsen, Mohana Ramaratnam, and Randy L Buckner. The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5(1), 11–34 (2007)Google Scholar
  19. 19.
    Herrick, R., McKay, M., Olsen, T., Horton, W., Florida, M., Moore, C.J., Marcus, D.S.: Data dictionary services in XNAT and the Human Connectome Project. Frontiers in Neuroinformatics 8, 65 (2014)CrossRefGoogle Scholar
  20. 20.
    Schwartz, Y., Barbot, A., Thyreau, B., Frouin, V., Varoquaux, G., Siram, A., Marcus, D.S., Poline, J.-B.: PyXNAT: XNAT in Python. Frontiers in Neuroinformatics 6, 12 (2012)CrossRefGoogle Scholar
  21. 21.
    Parsia, B., Sirin, E.: Pellet: An owl dl reasoner. In: Third International Semantic Web Conference-Poster (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Santiago Timón Reina
    • 1
    Email author
  • M. Rincón Zamorano
    • 1
  • Atle Bjørnerud
    • 2
  1. 1.Departamento de Inteligencia ArtificialUNEDMadridSpain
  2. 2.The Intervention CentreOslo University HospitalOsloNorway

Personalised recommendations