On the Automatic Tuning of a Retina Model by Using a Multi-objective Optimization Genetic Algorithm

  • Rubén Crespo-Cano
  • Antonio Martínez-Álvarez
  • Ariadna Díaz-Tahoces
  • Sergio Cuenca-Asensi
  • J. M. Ferrández
  • Eduardo Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9107)

Abstract

The retina is responsible for transducing visual information into spikes trains which are then sent via the optical nerve to the visual cortex. This is the first step in the visual pathway responsible for the sense of vision. Our research group is working on the design of a cortical visual neuroprosthesis aimed to restore some functional vision to profoundly visual-impaired people. The goal of developing such a bioinspired retinal encoder is not simply to record a high-resolution image, but to process its visual information and transmit it in a meaningful way to the appropriate area on the visual cortex. Retinal models to be implemented have to match as much as possible the output produced by an actual biological retina. The models involve a big search space defined by a set of parameters that have to be appropriately adjusted. This in itself has several problems which need to be addressed. We propose in this paper an automatic evolutionary multi-objective strategy for selecting those parameters which best approximate the outputs by the synthetic retina model and the biological records. A case study is presented where results of a retina model tuned with our method are compared to biological recordings.

Keywords

Retina modeling Visual neurprostheses Multi-objective optimization NSGA-II Evolutionary search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fernandez, E., Pelayo, F., Romero, S., Bongard, M., Marin, C., Alfaro, A., Merabet, L.: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. Journal of Neural Engineering 2(4), R1 (2005), doi:10.1088/1741-2560Google Scholar
  2. 2.
    Normann, R.A., Greger, B.A., House, P., Romero, S.F., Pelayo, F., Fernandez, E.: Toward the development of a cortically based visual neuroprosthesis. Journal of Neural Engineering 6(3), 035001 (2009)Google Scholar
  3. 3.
    Morillas, C., Romero, S., Martínez, A., Pelayo, F., Reyneri, L., Bongard, M., Fernández, E.: A neuroengineering suite of computational tools for visual prostheses. Neurocomputing 70(16-8), 2817–2827 (2007), Neural Network Applications in Electrical Engineering Selected papers from the 3rd International Work-Conference on Artificial Neural Networks (IWANN 2005) 3rd International Work-Conference on Artificial Neural Networks (IWANN 2005), http://www.sciencedirect.com/science/article/pii/S0925231207001579, doi:http://dx.doi.org/10.1016/j.neucom.2006.04.017
  4. 4.
    Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Fernández, E.: A computational tool to test neuromorphic encoding schemes for visual neuroprostheses. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 510–517. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/11494669_63, doi:10.1007/11494669_63
  5. 5.
    Martínez-Álvarez, A., Olmedo-Payá, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: Retinastudio: A bioinspired framework to encode visual information. Neurocomputing 114, 45–53 (2013), Searching for the interplay between neuroscience and computation Selected papers from the {IWINAC} 2011 Conference, http://www.sciencedirect.com/science/article/pii/S0925231212007850, doi:http://dx.doi.org/10.1016/S0006-89930003072-9
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100. International Center for Numerical Methods in Engineering, Athens (2001)Google Scholar
  8. 8.
    Martínez-Álvarez, A., Cuenca-Asensi, S., Ortiz, A., Calvo-Zaragoza, J., Tejuelo, L.A.V.: Tuning compilations by multi-objective optimization: Application to apache web server. Applied Soft Computing 29, 461–470 (2015), http://www.sciencedirect.com/science/article/pii/S156849461500, doi:http://dx.doi.org/10.1016/j.asoc.2015.01.029
  9. 9.
    Fernández, E., Ferrández, J.-M., Ammermller, J., Normann, R.A.: Population coding in spike trains of simultaneously recorded retinal ganglion cells1. Brain Research 887(1), 222–229 (2000), http://www.sciencedirect.com/science/article/pii/S0006899300030729, doi:http://dx.doi.org/10.1016/S0006-89930003072-9
  10. 10.
    Normann, R.A., Warren, D.J., Ammermuller, J., Fernandez, E., Guillory, S.: High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Research 41(10-11), 1261–1275 (2001), http://www.sciencedirect.com/science/article/pii/S004269890000273X, doi:http://dx.doi.org/10.1016/S0042-69890000273-X
  11. 11.
    Bongard, M., Micol, D., Fernández, E.: Nev2lkit: A new open source tool for handling neuronal event files from multi-electrode recordings. International Journal of Neural Systems 24(04), 1450009, pMID: 24694167 (2014), http://www.worldscientific.com/doi/abs/10.1142/S0129065714500099, doi:10.1142/S0129065714500
  12. 12.
    Ortega, G.J., Bongard, M., Louis, E., Fernández, E.: Conditioned spikes: a simple and fast method to represent rates and temporal patterns in multielectrode recordings. Journal of Neuroscience Methods 133(1-2), 135–141 (2004), http://www.sciencedirect.com/science/article/pii/S0165027003003418, doi:http://dx.doi.org/10.1016/j.jneumeth.2003.10.005
  13. 13.
    Straw, A.D.: Vision egg: an open-source library for realtime visual stimulus generation. Frontiers in Neuroinformatics 2(4), http://www.frontiersin.org/neuroinformatics/10.3389/neuro.11.004.2008/abstract, doi:10.3389/neuro.11.004.2008
  14. 14.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rubén Crespo-Cano
    • 1
  • Antonio Martínez-Álvarez
    • 1
  • Ariadna Díaz-Tahoces
    • 2
  • Sergio Cuenca-Asensi
    • 1
  • J. M. Ferrández
    • 3
  • Eduardo Fernández
    • 2
  1. 1.Department of Computer TechnologyUniversity of AlicanteAlicanteSpain
  2. 2.Institute of Bioengineering and CIBER BBNUniversity Miguel HernándezAlicanteSpain
  3. 3.Department of Electronics and Computer TechnologyUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations