Low-Power Occupancy Sensor for an Ambient Assisted Living System

  • Francisco Fernandez-Luque
  • Juan Zapata
  • Ramón Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9108)


In this work, we introduce an Ambient Assisted Living (AAL) system that allows to infer a potential dangerous action of an elderly person living alone at home. This inference is obtained by a specific sensorisation with sensor nodes and a reasoning layer embedded in a personal computer that learns of the users behavior patterns and advices when actual one differs significantly in the normal patterns. In this type of systems, energy is a limited resource therefore sensor devices need to be properly managed to conserve energy. In this paper, a force-capacitive transducer based sensor has been proposed, implemented and tested. This sensor is based on Electro-Mechanical Films (EMFiTM) transducer which is able to detect force variations in a quasi-passive way. The transducer is a capacitor with variable capacity depending on the force exerted on its surface. The characterization of the transducer conducted by us in this way is not present in the literature. This detection of force is used to trigger an active mechanism to measure the weight by means of the transducer capacity, now modelled by us. A low-power wireless sensor node prototype including this new sensor has been assembled and validated with a wide range of weights. The occupancy detection was successful and the power consumption of the node was increased at less than a 15%, which is acceptable for implementation.


Low power sensors EMFI Signal transforms Ambient Assisted Living Ubiquitous monitoring WSN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fernández-Luque, F., Zapata, J., Ruiz, R., Iborra, E.: A wireless sensor network for assisted living at home of elderly people. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009, Part II. LNCS, vol. 5602, pp. 65–74. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Blaya, J.A.B., Palma, J., Villa, A., Perez, D., Iborra, E.: Ontology based approach to the detection of domestic problems for independent senior people. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009, Part II. LNCS, vol. 5602, pp. 55–64. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Gaddam, A., Mukhopadhyay, S., Gupta, G.: Necessity of a bed-sensor in a smart digital home to care for elder-people. In: 2008 IEEE Sensors, pp. 1340–1343 (2008), doi:10.1109/ICSENS.2008.4716693Google Scholar
  4. 4.
    Lekkala, J., Paajanen, M.: Emfi-new electret material for sensors and actuators. In: 1999 Proceedings of the 10th International Symposium on Electrets, ISE 10, pp. 743–746 (1999), doi:10.1109/ISE.1999.832151Google Scholar
  5. 5.
    Gaddam, A., Mukhopadhyay, S., Gupta, G.: Development of a bed sensor for an integrated digital home monitoring system. In: IEEE International Workshop on Medical Measurements and Applications, MeMeA 2008, pp. 33–38 (2008), doi:10.1109/MEMEA.2008.4542993Google Scholar
  6. 6.
    Gaddam, A., Mukhopadhyay, S., Gupta, G.: Intelligent bed sensor system: Design, expermentation and results. In: 2010 IEEE Sensors Applications Symposium (SAS), pp. 220–225 (2010), doi:10.1109/SAS.2010.5439390Google Scholar
  7. 7.
    Flexiforce® Sensors - Specifications and Features, Tech. rep., Tescan, Inc.Google Scholar
  8. 8.
    Tazawa, H., Hashimoto, Y., Takami, M., Yufu, Y., Whittow, G.C.: Simple, noninvasive system for measuring the heart rate of avian embryos and hatchlings by means of a piezoelectric film. Med. Biol. Eng. Comput. 31(2), 129–134 (1993), CrossRefGoogle Scholar
  9. 9.
    Choi, S., Jiang, Z.: A wearable cardiorespiratory sensor system for analyzing the sleep condition. Expert Syst. Appl. 35, 317–329 (2008),, doi:10.1016/j.eswa.2007.06.014CrossRefGoogle Scholar
  10. 10.
    Thin film ferro-electret sensors,
  11. 11.
    Ruiz, R., Fernández-Luque, F.J., Zapata, J.: Wireless sensor network for ambient assisted living. In: Merrett, G.V., Tan, Y.K. (eds.) Wireless Sensor Networks: Application-Centric Design, InTech, pp. 127–146 (2010)Google Scholar
  12. 12.
    Paajanen, M.: Electromechanical film (emfi) — a new multipurpose electret material. Sensors and Actuators A: Physical 84(1-2), 95–102 (2000), CrossRefGoogle Scholar
  13. 13.
    Paajanen, M.: Modelling the electromechanical film (emfi). Journal of Electrostatics 48(3-4), 193–204 (2000), CrossRefGoogle Scholar
  14. 14.
    Paajanen, M., Lekkala, J., Valimaki, H.: Electromechanical modeling and properties of the electret film emfi. IEEE Transactions on Dielectrics and Electrical Insulation 8(4), 629–636 (2001), doi:10.1109/94.946715CrossRefGoogle Scholar
  15. 15.
    Preamplifiers for EMFIT sensors, Tech. rep., EMFIT, Ltd. (2004)Google Scholar
  16. 16.
    Tuncer, E., Wegener, M., Gerhard-Multhaupt, R.: Modeling electro-mechanical properties of layered electrets: application of the finite-element method. Journal of Electrostatics 63(1), 21–35 (2005),, doi:10.1016/j.elstat.2004.06.002CrossRefGoogle Scholar
  17. 17.
    Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput. 3(2), 42–47 (2004), doi:10.1109/MPRV.2004.1316817CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francisco Fernandez-Luque
    • 1
  • Juan Zapata
    • 1
  • Ramón Ruiz
    • 1
  1. 1.Department of Electrónica, Tecnología de Computadoras y Proyectos, ETSIT- Escuela Técnica Superior de Ingeniería de TelecomunicaciónUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations