Towards Robot Localization Using Bluetooth Low Energy Beacons RSSI Measures

  • J. M. Cuadra-TroncosoEmail author
  • A. Rivas-Casado
  • J. R. Álvarez-Sánchez
  • F. de la Paz-López
  • D. Obregón-Castellanos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9108)


This article presents a preliminary study in order to explore the possibilities for robot localization using measured received signal strength indicator (RSSI) from Bluetooth low energy (BLE) beacons. BLE is a new brand technology focused on information transmission using very low energy consumption. It is being included in mobile devices from year 2011, nowadays almost every new mobile phone is shipped with this technology. Robot localization using particles filter has been developed in recent years using wireless technologies with a significant success. BLE beacons measures are rather noisier than measures from similar wireless devices. In this work we make an initial model of BLE measures and their noise. The model is used to generate data to be processed by a particle filter designed for localization using only ultra-wide band (UWB) beacons ranges. Data are generated with different noise level in order to explore localization errors behavior, these levels cover real noise levels founded in RSSI measure characterization.


Robot localization Mobile devices localization Bluetooth low energy Particle filter RSSI based trilateration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6), 1067–1080 (2007), doi:10.1109/TSMCC.2007.905750CrossRefGoogle Scholar
  2. 2.
    Sana: A Survey of Indoor Localization Techniques. IOSR Journal of Electrical and Electronics Engineering 6(3), 69–76 (2013)Google Scholar
  3. 3.
    Pirzada, N., Yunus Nayan, M., Subhan, F., Fadzil Hassan, M., Amir Khan, M.: Comparative Analysis of Active and Passive Indoor Localization Systems. AASRI Procedia 5, 92–97 (2013), 2013 AASRI Conference on Parallel and Distributed Computing and SystemsGoogle Scholar
  4. 4.
    Stojanović, D., Stojanović, N.: Indoor Localization and Tracking: Methods, Technologies and Research Challenges. Facta Universitatis, Series: Automatic Control and Robotics 13(1), 57–72 (2014)Google Scholar
  5. 5.
    Mainetti, L., Patrono, L., Sergi, I.: A survey on indoor positioning systems. In: 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 111–120 (September 2014)Google Scholar
  6. 6.
    Heydon, R.: Bluetooth Low Energy - The Developer’s HandBook. Prentice Hall (October 2012)Google Scholar
  7. 7.
    Papamanthou, C., Preparata, F.P., Tamassia, R.: Algorithms for Location Estimation Based on RSSI Sampling. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS, vol. 5389, pp. 72–86. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Zanca, G., Zorzi, F., Zanella, A., Zorzi, M.: Experimental Comparison of RSSI-based Localization Algorithms for Indoor Wireless Sensor Networks. In: Proceedings of the Workshop on Real-world Wireless Sensor Networks, REALWSN, pp. 1–5. ACM, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Oliveira, L., Li, H., Almeida, L., Abrudan, T.E.: RSSI-based relative localisation for mobile robots. Ad Hoc Networks 13(pt.B(0)), 321–335 (2014)Google Scholar
  10. 10.
    Guvenc, I., Chong, C.-C.: A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques. IEEE Communications Surveys Tutorials 11(3), 107–124 (2009)CrossRefGoogle Scholar
  11. 11.
    Shen, J., Molisch, A.F., Salmi, J.: Accurate Passive Location Estimation Using TOA Measurements. IEEE Transactions on Wireless Communications 11(6), 2182–2192 (2012)CrossRefGoogle Scholar
  12. 12.
    Gustafsson, F., Gunnarsson, F.: Positioning using time-difference of arrival measurements. In: Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 6, p. VI-553-6 (April 2003)Google Scholar
  13. 13.
    McGuire, M., Plataniotis, K.N., Venetsanopoulos, A.N.: Location of mobile terminals using time measurements and survey points. IEEE Transactions on Vehicular Technology 52(4), 999–1011 (2003)CrossRefGoogle Scholar
  14. 14.
    Niculescu, D., Nath, B.: Ad hoc positioning system (APS) using AOA. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, INFOCOM 2003, vol. 3, pp. 1734–1743. IEEE Societies (March 2003)Google Scholar
  15. 15.
    Cong, L., Zhuang, W.: Nonline-of-sight error mitigation in mobile location. In: Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, INFOCOM 2004, vol. 1, p. 659 (March 2004)Google Scholar
  16. 16.
    Muthukrishnan, K., Koprinkov, G.T., Meratnia, N., Lijding, M.E.M.: Using time-of-flight for WLAN localization: feasibility study. Technical Report TR-CTI, Enschede (June 2006)Google Scholar
  17. 17.
    Chiang, J.T., Haas, J.J., Hu, Y.-C.: Secure and Precise Location Verification Using Distance Bounding and Simultaneous Multilateration. In: Proceedings of the Second ACM Conference on Wireless Network Security, WiSec 2009, pp. 181–192. ACM, New York (2009)CrossRefGoogle Scholar
  18. 18.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)Google Scholar
  19. 19.
    Marchetti, L., Grisetti, G., Iocchi, L.: A comparative analysis of particle filter based localization methods. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 442–449. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    González, J., Blanco, J.L., Galindo, C., Ortiz-de Galisteo, A., Fernández-Madrigal, J.A., Moreno, F.A., Martínez, J.L.: Mobile robot localization based on Ultra-Wide-Band ranging: A particle filter approach. Robotics and Autonomous Systems 57(5), 496–507 (2009)CrossRefGoogle Scholar
  21. 21.
    Dahlgren, E., Mahmood, H.: Evaluation of indoor positioning based on BluetoothR Smart technology. Master’s thesis (2014)Google Scholar
  22. 22.
  23. 23.
    Doucet, A., de Freitas, N., Murphy, K.P., Russell, S.J.: Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 176–183. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  24. 24.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • J. M. Cuadra-Troncoso
    • 1
    Email author
  • A. Rivas-Casado
    • 2
  • J. R. Álvarez-Sánchez
    • 1
  • F. de la Paz-López
    • 1
  • D. Obregón-Castellanos
    • 1
  1. 1.Departamento de Inteligencia ArtificialUNEDMadridSpain
  2. 2.Guapu TechnologiesMadridSpain

Personalised recommendations