Multicriteria Inventory Routing by Cooperative Swarms and Evolutionary Algorithms

  • Zhiwei Yang
  • Michael Emmerich
  • Thomas Bäck
  • Joost Kok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9108)


The Inventory Routing Problem is an important problem in logistics and known to belong to the class of NP hard problems. In the bicriteria inventory routing problem the goal is to simultaneously minimize distance cost and inventory costs. This paper is about the application of indicator-based evolutionary algorithms and swarm algorithms for finding an approximation to the Pareto front of this problem. We consider also robust vehicle routing as a tricriteria version of the problem.


Particle Swarm Optimization Pareto Front Multiobjective Optimization Inventory Level Inventory Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Coello, C.A.C., Lechuga, M.S.: Mopso: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1051–1056. IEEE (2002)Google Scholar
  3. 3.
    Emmerich, M.T.M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 121–135. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Geiger, M.J., Sevaux, M.: The biobjective inventory routing problem–problem solution and decision support. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 365–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82 (2012)Google Scholar
  7. 7.
    Hupkens, I., Emmerich, M.: Logarithmic-time updates in sms-emoa and hypervolume-based archiving. In: Emmerich, M., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics,and Evolutionary Computation IV. AISC, vol. 227, pp. 155–169. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Li, R., Emmerich, M., Eggermont, J., Bovenkamp, E.G.P.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1645–1652. ACM (2006)Google Scholar
  9. 9.
    Miettinen, K.: Nonlinear multiobjective optimization, vol. 12. Springer Science & Business Media (1999)Google Scholar
  10. 10.
    Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimization on computer grids. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 869–875. ACM, New York (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhiwei Yang
    • 1
  • Michael Emmerich
    • 1
  • Thomas Bäck
    • 1
  • Joost Kok
    • 1
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations