Online Control of Enumeration Strategies via Bat-Inspired Optimization

  • Ricardo Soto
  • Broderick Crawford
  • Rodrigo Olivares
  • Franklin Johnson
  • Fernando Paredes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9108)

Abstract

Constraint programming allows to solve constraint satisfaction and optimization problems by building and then exploring a search tree of potential solutions. Potential solutions are generated by firstly selecting a variable and then a value from the given problem. The enumeration strategy is responsible for selecting the order in which those variables and values are selected to produce a potential solution. There exist different ways to perform this selection, and depending on the quality of this decision, the efficiency of the solving process may dramatically vary. A modern idea to handle this concern, is to interleave during solving time a set of different strategies instead of using a single one. The strategies are evaluated according to process indicators in order to use the most promising one on each part of the search process. This process is known as online control of enumeration strategies and its correct configuration can be seen itself as an optimization problem. In this paper, we present a new system for online control of enumeration strategies based on bat-inspired optimization. The bat algorithm is a relatively modern metaheuristic based on the location behavior of bats that employ echoes to identify the objects in their surrounding area. We illustrate, promising results where the proposed bat algorithm is able to outperform previously reported metaheuristic-based approaches for online control of enumeration strategies.

Keywords

Constraint Programming Constraint Satisfaction Problems Swarm Intelligence Bat Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crawford, B., Soto, R., Montecinos, M., Castro, C., Monfroy, E.: A Framework for Autonomous Search in the Eclips e Solver. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 79–84. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Barták, R., Rudová, H.: Limited assignments: A new cutoff strategy for incomplete depth-first search. In: Proceedings of the 20th ACM Symposium on Applied Computing (SAC), pp. 388–392 (2005)Google Scholar
  3. 3.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI), pp. 146–150. IOS Press (2004)Google Scholar
  4. 4.
    Crawford, B., Castro, C., Monfroy, E., Soto, R., Palma, W., Paredes, F.: Dynamic Selection of Enumeration Strategies for Solving Constraint Satisfaction Problems. Rom. J. Inf. Sci. Tech. (2012) (to appear)Google Scholar
  5. 5.
    Crawford, B., Soto, R., Castro, C., Monfroy, E., Paredes, F.: An Extensible Autonomous Search Framework for Constraint Programming. Int. J. Phys. Sci. 6(14), 3369–3376 (2011)Google Scholar
  6. 6.
    Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)CrossRefGoogle Scholar
  7. 7.
    Epstein, S., Petrovic, S.: Learning to solve constraint problems. In: Proceedings of the Workshop on Planning and Learning (ICAPS) (2007)Google Scholar
  8. 8.
    Epstein, S.L., Freuder, E.C., Wallace, R.J., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–542. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Grimes, D., Wallace, R.J.: Learning to identify global bottlenecks in constraint satisfaction search. In: Proceedings of the Twentieth International Florida Artificial Intelligence Research Society (FLAIRS) Conference, pp. 592–597. AAAI Press (2007)Google Scholar
  10. 10.
    Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer (2012)Google Scholar
  11. 11.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)CrossRefGoogle Scholar
  12. 12.
    Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: Gsa: A gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Wallace, R.J., Grimes, D.: Experimental studies of variable selection strategies based on constraint weights. J. Algorithms 63(1-3), 114–129 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Xu, Y., Stern, D., Samulowitz, H.: Learning adaptation to solve constraint satisfaction problems. In: Proceedings of the 3rd International Conference on Learning and Intelligent Optimization (LION), pp. 507–523 (2009)Google Scholar
  16. 16.
    Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)Google Scholar
  17. 17.
    Yang, X.-S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Computing and Applications 23(7-8), 2051–2057 (2013)CrossRefGoogle Scholar
  18. 18.
    Yang, X.-S., He, X.: Bat algorithm: literature review and applications. IJBIC 5(3), 141–149 (2013)CrossRefGoogle Scholar
  19. 19.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Yang, X.-S.: Bat algorithm for multi-objective optimisation. IJBIC 3(5), 267–274 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo Soto
    • 1
    • 2
    • 3
  • Broderick Crawford
    • 1
    • 4
    • 5
  • Rodrigo Olivares
    • 1
  • Franklin Johnson
    • 6
  • Fernando Paredes
    • 7
  1. 1.Pontificia Universidad Católica de ValparaísoValparaisoChile
  2. 2.Universidad Autónoma de ChileSantiagoChile
  3. 3.Universidad Central de ChileSantiagoChile
  4. 4.Universidad Finis TerraeSantiagoChile
  5. 5.Universidad San SebastiánBío BíoChile
  6. 6.Universidad de Playa AnchaValparaísoChile
  7. 7.Escuela de Ingeniería IndustrialUniversidad Diego PortalesSantiagoChile

Personalised recommendations