On Full Multigrid Schemes for Isogeometric Analysis

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)

Abstract

We investigate a geometric full multigrid method for solving the large sparse linear systems which arise in isogeometric discretizations of elliptic partial differential equations. We observe that the full multigrid approach performs much better than the V-cycle multigrid method in many cases, in particular in higher dimensions with increased spline degrees. Often, a single cycle of the full multigrid process is sufficient to obtain a quasi-optimal solution in the L 2-norm. A modest increase in the number of smoothing steps suffices to restore optimality in cases where the V-cycle performs badly.

Notes

Acknowledgement

This work was supported by the National Research Network “Geometry + Simulation” (NFN S117, 2012–2016), funded by the Austrian Science Fund (FWF). The first author was also supported by the project AComIn “Advanced Computing for Innovation”, grant 316087, funded by the FP7 Capacity Programme “Research Potential of Convergence Regions”.

References

  1. 1.
    Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(07), 1031–1090 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    L. Beirão da Veiga, D. Cho, L. Pavarino, S. Scacchi, Overlapping Schwarz methods for isogeometric analysis. SIAM J. Numer. Anal. 50(3), 1394–1416 (2012). doi:10.1137/110833476. http://epubs.siam.org/doi/abs/10.1137/110833476 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    L. Beirão da Veiga, D. Cho, L. Pavarino, S. Scacchi, BDDC preconditioners for isogeometric analysis. Math. Models Methods Appl. Sci. 23(6), 1099–1142 (2013). doi: 10.1142/S0218202513500048 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    W.L. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial (Society for Industrial and Applied Mathematics, Philadelphia, 2000) ISBN:9780898714623CrossRefMATHGoogle Scholar
  5. 5.
    A. Buffa, H. Harbrecht, A. Kunoth, G. Sangalli, BPX-preconditioning for isogeometric analysis. Comput. Meth. Appl. Mech. Eng. 265, 63–70 (2013). doi:10.1016/j.cma.2013.05.014. ISSN:0045-7825Google Scholar
  6. 6.
    T. Chen, R. Mo, Z.W. Gong, Imposing essential boundary conditions in isogeometric analysis with Nitsche’s method. Appl. Mech. Mater. 121–126, 2779–2783 (2011). doi: 10.4028/www.scientific.net/AMM.121-126.2779 CrossRefGoogle Scholar
  7. 7.
    N. Collier, D. Pardo, L. Dalcin, M. Paszynski, V.M. Calo, The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers. Comput. Meth. Appl. Mech. Eng. 213–216, 353–361 (2012) doi:10.1016/j.cma.2011.11.002. ISSN:0045-7825. http://www.sciencedirect.com/science/article/pii/S0045782511003392
  8. 8.
    J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  9. 9.
    K.P.S. Gahalaut, J.K. Kraus, S.K. Tomar, Multigrid methods for isogeometric discretization. Comput. Meth. Appl. Mech. Eng. 253, 413–425 (2013). doi:10.1016/j.cma.2012.08.015. ISSN:0045-7825. http://www.sciencedirect.com/science/article/pii/S0045782512002678
  10. 10.
    W. Hackbusch, Multi-Grid Methods and Applications. Springer Series in Computational Mathematics. vol. 4 (Springer, Berlin, 2003)Google Scholar
  11. 11.
    T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194(39–41), 4135–4195 (2005). doi:10.1016/j.cma.2004.10.008. ISSN:00457825. http://dx.doi.org/10.1016/j.cma.2004.10.008
  12. 12.
    S.K. Kleiss, C. Pechstein, B. Jüttler, S. Tomar, IETI – isogeometric tearing and interconnecting. Comput. Meth. Appl. Mech. Eng. 247–248, 201–215 (2012). doi:10.1016/j.cma.2012.08.007. ISSN:0045-7825Google Scholar
  13. 13.
    T.J. Mitchell, S. Govindjee, R.L. Taylor, A method for enforcement of Dirichlet boundary conditions in isogeometric analysis, in Recent Developments and Innovative Applications in Computational Mechanics, ed. by D.M.-Hoeppe, S. Loehnert, S. Reese (Springer, Berlin, 2011), pp. 283–293. doi:10.1007/978-3-642-17484-1_32. ISBN:978-3-642-17483-4. http://dx.doi.org/10.1007/978-3-642-17484-1_32
  14. 14.
    L. Piegl, W. Tiller, The NURBS Book. Monographs in Visual Communications (Springer, Berlin, 1997). ISBN:9783540615453Google Scholar
  15. 15.
    L. Schumaker, Spline Functions: Basic Theory. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 2007). ISBN:9780521705127CrossRefMATHGoogle Scholar
  16. 16.
    U. Trottenberg, C.W. Oosterlee, A. Schuller, Multigrid (Elsevier, Amsterdam, 2000). ISBN:9780080479569MATHGoogle Scholar
  17. 17.
    D. Wang, J. Xuan, An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Comput. Meth. Appl. Mech. Eng. 199(37–40), 2425–2436 (2010). doi:http://dx.doi.org/10.1016/j.cma.2010.03.032. ISSN:0045-7825. http://www.sciencedirect.com/science/article/pii/S004578251000109X

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Computational MathematicsJohannes Kepler University LinzLinzAustria

Personalised recommendations