Algebraic Multigrid for Discontinuous Galerkin Methods Using Local Transformations

  • Christian Engwer
  • Klaus Johannsen
  • Andreas NüßingEmail author
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)


In this paper we present an algebraic multigrid for discontinuous Galerkin methods. Coarser grid levels are created by applying a semi-coarsening approach based on an edge-coloring of the matrix-graph. The grid-transfer uses local basis transformations between the polynomial bases of neighboring elements. Along the coarsening process, the implicit block structure of the linear system is preserved. High frequency errors are reduced by applying an overlapping block smoother. The overlapping patches are constructed and locally weighted depending on the problem type. As model problems serve the Poisson and Stokes equations. The multigrid method is implemented in C++ using the DUNE framework.


Algebraic multigrid Discontinuous Galerkin Local transformations 



This work was supported by the “German Academic Exchange Service” (DAAD) with the project 54570350 of the “German-Norwegian collaborative research support scheme”.


  1. 1.
    D. Arnold, F. Brezzi, B. Cockburn, L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/2002). ISSN 0036-1429Google Scholar
  2. 2.
    B. Ayuso de Dios, L. Zikatanov, Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40(1–3), 4–36 (2009). ISSN 0885-7474Google Scholar
  3. 3.
    P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008). ISSN 0010-485XGoogle Scholar
  4. 4.
    P. Bastian, M. Blatt, R. Scheichl, Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl. 19(2), 367–388 (2012). ISSN 1070-5325Google Scholar
  5. 5.
    P. Bastian, F. Heimann, S. Marnach, Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika (Prague) 46(2), 294–315 (2010). ISSN 0023-5954Google Scholar
  6. 6.
    K. Johannsen, Multigrid methods for NIPG. Technical Report, University of Texas at Austin, 2005Google Scholar
  7. 7.
    F. Prill, M. Lukáčová-Medviďová, R. Hartmann, Smoothed aggregation multigrid for the discontinuous Galerkin method. SIAM J. Sci. Comput. 31(5), 3503–3528 (2009). ISSN 1064-8275Google Scholar
  8. 8.
    B. Rivière, V. Girault, Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces. Comput. Methods Appl. Mech. Eng. 195(25–28), 3274–3292 (2006). ISSN 0045-7825Google Scholar
  9. 9.
    J. Schöberl, W. Zulehner, On Schwarz-type smoothers for saddle point problems. Numer. Math. 95(2), 377–399 (2003). ISSN 0029-599XGoogle Scholar
  10. 10.
    S.P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Comput. Phys. 65(1), 138–158 (1986). ISSN 0021-9991Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Engwer
    • 1
  • Klaus Johannsen
    • 2
  • Andreas Nüßing
    • 1
    Email author
  1. 1.Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
  2. 2.Uni Computing, Uni Research ASBergenNorway

Personalised recommendations