Advertisement

RDF Digest: Efficient Summarization of RDF/S KBs

  • Georgia Troullinou
  • Haridimos Kondylakis
  • Evangelia Daskalaki
  • Dimitris Plexousakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9088)

Abstract

The exponential growth of the web and the extended use of semantic web technologies has brought to the fore the need for quick understanding, flexible exploration and selection of complex web documents and schemas. To this direction, ontology summarization aspires to produce an abridged version of the original ontology that highlights its most representative concepts. In this paper, we present RDF Digest, a novel platform that automatically produces summaries of RDF/S Knowledge Bases (KBs). A summary is a valid RDFS document/graph that includes the most representative concepts of the schema adapted to the corresponding instances. To construct this graph, our algorithm exploits the semantics and the structure of the schema and the distribution of the corresponding data/instances. The performed preliminary evaluation demonstrates the benefits of our approach and the considerable advantages gained.

Keywords

Semantic summaries RDF/S documents/graphs Schema summary 

Notes

Acknowledgments

This work was partially supported by the EU projects DIACHRON (FP7-601043), iManageCancer (H2020-643529), MyHealthAvatar (FP7-600929) and EURECA (FP7-288048).

References

  1. 1.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite Approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies. LNCS, vol. 5445. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Stuckenschmidt, H., Klein, M.: structure-based partitioning of large concept hierarchies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 289–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Marciniak, J.: XML schema and data summarization. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 556–565. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Yu, C., Jagadish, H.V.: Schema summarization. In: VLDB, pp. 319–330 (2006)Google Scholar
  6. 6.
    Graves, A., Adali, S., Hendler, J.: A method to rank nodes in an RDF graph. In: ISWC (2008)Google Scholar
  7. 7.
    Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph. In: WWW, pp. 707–716 (2007)Google Scholar
  8. 8.
    Queiroz-Sousa, P.O., Salgado, A.C., Pires, C.E.: A method for building personalized ontology summaries. J. Inf. Data Manage. 4(3), 236 (2013)Google Scholar
  9. 9.
    Schmachtenberg, M., Bizer, C., Paulheim H.: State of the LOD Cloud, November 2014. http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
  10. 10.
    RDF Schema 1.1, November 2014. http://www.w3.org/TR/rdf-schema/
  11. 11.
    Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: a declarative query language for RDF. In: WWW, pp. 592–603 (2002)Google Scholar
  12. 12.
    Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and minimization of RDF/S query patterns. In: ISWC, pp. 607–623 (2005)Google Scholar
  13. 13.
    Peroni, S., Motta, E., d’Aquin, M.: Identifying key concepts in an ontology, through the integration of cognitive principles with statistical and topological measures. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Pires, C.E., Sousa, P., Kedad, Z., Salgado, A.C.: Summarizing ontology-based schemas in PDMS. In: Data Engineering Workshops (ICDEW), pp. 239–244 (2010)Google Scholar
  15. 15.
    Hasan, R.: Generating and summarizing explanations for linked data. In: ESWC, pp. 473–487 (2014)Google Scholar
  16. 16.
    Donaway, R.L., Drummey, K.W., Mather, L.A.: A comparison of rankings produced by summarization evaluation measures. In: NAACL-ANLP Workshop, pp. 69–78 (2000)Google Scholar
  17. 17.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Castano, S., De Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual schema analysis: techniques and applications. TODS 23(3), 286–333 (1998)CrossRefGoogle Scholar
  19. 19.
    Liu, X., Tian, Y., He, Q., Lee, W.C., McPherson, J.: Distributed graph summarization. In: CIKM, pp. 799–808 (2014)Google Scholar
  20. 20.
    Khatchadourian, S., Consens, M.P.: ExpLOD: summary-based exploration of interlinking and RDF Usage in the linked open data cloud. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 272–287. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Georgia Troullinou
    • 1
  • Haridimos Kondylakis
    • 1
  • Evangelia Daskalaki
    • 1
  • Dimitris Plexousakis
    • 1
  1. 1.Institute of Computer ScienceHeraklionGreece

Personalised recommendations