Advertisement

Standardized and Efficient RDF Encoding for Constrained Embedded Networks

  • Sebastian Käbisch
  • Daniel Peintner
  • Darko Anicic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9088)

Abstract

In the context of Web of Things (WoT), embedded networks have to face the challenge of getting ever more complex. The complexity arises as the number of interchanging heterogeneous devices and different hardware resource classes always increase. When it comes to the development and the use of embedded networks in the WoT domain, Semantic Web technologies are seen as one way to tackle this complexity. For example, properties and capabilities of embedded devices may be semantically described in order to enable an effective search over different classes of devices, semantic data integration may be deployed to integrate data produced by these devices, or embedded devices may be empowered to reason about semantic data in the context of WoT applications. Despite these possibilities, a wide adoption of Semantic Web or Linked Data technologies in the domain of embedded networks has not been established yet. One reason for this is an inefficient representation of semantic data. Serialisation formats of RDF data, such as for instance a plain-text XML, are not suitable for embedded devices. In this paper, we present an approach that enables constrained devices, such as microcontrollers with very limited hardware resources, to store and process semantic data. Our approach is based on the W3C Efficient XML Interchange (EXI) format. To show the applicability of the approach, we provide an EXI-based \(\mu \)RDF Store and show associated evaluation results.

Keywords

Web of Things (WoT) Microcontroller RDF EXI RDF store 

References

  1. 1.
    Bormann, C., Mulligan, G.: Ipv6 over low power wpan (6lowpan) (2009). http://datatracker.ietf.org/wg/6lowpan/charter/
  2. 2.
    Bournez, C.: Efficient XML Interchange Evaluation. W3C Working Draft, 7 April 2009. http://www.w3.org/TR/exi-evaluation/
  3. 3.
    Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)CrossRefGoogle Scholar
  4. 4.
    Fablet, Y., Peintner, D.: Efficient XML Interchange (EXI) Profile for limiting usage of dynamic memory. W3C Recommendation, 09 September 2014. http://www.w3.org/TR/exi-profile/
  5. 5.
    Faye, D.C., Curé, O., Blin, G.: A survey of RDF storage approaches. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées 15(1), 25 (2012)Google Scholar
  6. 6.
    Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF interchange (ERI) format for RDF data streams. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 244–259. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange. Web Semant.: Sci., Serv. Agents World Wide Web 19, 22–41 (2013)CrossRefGoogle Scholar
  8. 8.
    Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, Ó.: RDSZ: an approach for lossless RDF stream compression. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 52–67. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  9. 9.
    Goldman, O., Lenkov, D.: XML binary characterization. World Wide Web Consortium, Note NOTE-xbc-characterization-20050331, March 2005. http://www.w3.org/TR/2005/NOTE-xbc-characterization-20050331
  10. 10.
    Hasemann, H., Kröller, A., Pagel, M.: RDF provisioning for the internet of things. In: 3rd IEEE International Conference on the Internet of Things, IOT 2012, Wuxi, Jiangsu Province, China, October 24–26, 2012, pp. 143–150 (2012)Google Scholar
  11. 11.
    Hasemann, H., Kröller, A., Pagel, M.: The wiselib tuplestore: a modular RDF database for the internet of things. CoRR, abs/1402.7228 (2014)Google Scholar
  12. 12.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. Inst. Radio Eng. 40(9), 1098–1101 (1952)Google Scholar
  13. 13.
    ISO/IEC. Iso/iec dis 15118–2: Road vehicles - vehicle to grid communication interface - part 2: Network and application protocol requirements (2012)Google Scholar
  14. 14.
    Käbisch, S., Peintner, D., Heuer, J., Kosch, H.: Optimized XML-based web service generation for service communication in restricted embedded environments. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation (2011)Google Scholar
  15. 15.
    Katz, P.W.: String searcher, and compressor using same, September 24 1991. US Patent 5,051,745Google Scholar
  16. 16.
    Henson, C., Lefort, L., Taylor, K.: W3c semantic sensor network incubator group (SSN-XG). W3C XG, W3C (2011). http://www.w3.org/2005/Incubator/ssn/
  17. 17.
    Schneider, J., Kamiya, T., Peintner, D., Kyusakov, R.: Efficient XML Interchange (EXI) Format 1.0 (Second Edition). W3C Recommendation, W3C, February 2014. http://www.w3.org/TR/2014/REC-exi-20140211/
  18. 18.
    Shelby, Z., Hartke, K., Bormann, C.: Constrained application protocol (coap). Technical report, IETF (2013). http://datatracker.ietf.org/doc/draft-ietf-core-coap/
  19. 19.
    W3C. RDF 1.1 Concepts and Abstract Syntax (2014). http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
  20. 20.
    W3C. RDF 1.1 XML syntax (2014)Google Scholar
  21. 21.
    ZigBee. Smart Energy Profile 2 (SEP 2) (2013). http://www.zigbee.org/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sebastian Käbisch
    • 1
  • Daniel Peintner
    • 1
  • Darko Anicic
    • 1
  1. 1.Siemens AG, Corporate TechnologyMunichGermany

Personalised recommendations