Advertisement

RODI: A Benchmark for Automatic Mapping Generation in Relational-to-Ontology Data Integration

  • Christoph Pinkel
  • Carsten Binnig
  • Ernesto Jiménez-Ruiz
  • Wolfgang May
  • Dominique Ritze
  • Martin G. Skjæveland
  • Alessandro Solimando
  • Evgeny Kharlamov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9088)

Abstract

A major challenge in information management today is the integration of huge amounts of data distributed across multiple data sources. A suggested approach to this problem is ontology-based data integration where legacy data systems are integrated via a common ontology that represents a unified global view over all data sources. However, data is often not natively born using these ontologies. Instead, much data resides in legacy relational databases. Therefore, mappings that relate the legacy relational data sources to the ontology need to be constructed. Recent techniques and systems that automatically construct such mappings have been developed. The quality metrics of these systems are, however, often only based on self-designed benchmarks. This paper introduces a new publicly available benchmarking suite called RODI, which is designed to cover a wide range of mapping challenges in Relational-to-Ontology Data Integration scenarios. RODI provides a set of different relational data sources and ontologies (representing a wide range of mapping challenges) as well as a scoring function with which the performance of relational-to-ontology mapping construction systems may be evaluated.

Keywords

Relational Database Relational Schema Database Schema Class Hierarchy Benchmark Suite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research is funded by the Seventh Framework Program (FP7) of the European Commission under Grant Agreement 318338, “Optique”. Ernesto Jiménez-Ruiz and Evgeny Kharlamov were also supported by the EPSRC projects MaSI\(^3\), Score! and DBOnto.

References

  1. 1.
    Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with COMA++. In: SIGMOD (2005)Google Scholar
  2. 2.
    Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Comput. Surv. 18(4), 323–364 (1986)CrossRefGoogle Scholar
  3. 3.
    Bhardwaj, A.P. et al.: DataHub: Collaborative data science and dataset version management at scale. In: CIDR (2015)Google Scholar
  4. 4.
    Console, M., Lenzerini, M.: Data quality in ontology-based data access: The case of consistency. In: AAAI (2014)Google Scholar
  5. 5.
    Dong, X.L., Srivastava, D.: Big data integration. In: PVLDB, vol. 6(11), pp. 1188–1189 (2013)Google Scholar
  6. 6.
    Fagin, R., et al.: Clio: Schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Freitas, F., Schulz, S.: Survey of current terminologies and ontologies in biology and medicine. RECIIS Elect. J. Commun. Inf. Innov. Health 3, 7–18 (2009)Google Scholar
  8. 8.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems—The Complete Book. 2nd edn. Prentice Hall, Englewood Cliffs (2008)Google Scholar
  9. 9.
    Giese, M. et al.: Optique Zooming In on Big Data Access. IEEE Computer (in press) (2015)Google Scholar
  10. 10.
    Haase, P. et al.: Optique system: Towards ontology and mapping management in OBDA solutions. In: WoDOOM (2013)Google Scholar
  11. 11.
    Hornung, T., May, W.: Experiences from a TBox reasoning application: Deriving a relational model by OWL schema analysis. In: OWLED Workshop (2013)Google Scholar
  12. 12.
    Horrocks, I.: What are ontologies good for? In: Evolution of Semantic Systems, pp. 175–188. Springer (2013)Google Scholar
  13. 13.
    Hu, W., Qu, Y.: Discovering simple mappings between relational database schemas and ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 225–238. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Impraliou, M., Stoilos, G., Cuenca Grau, B.: Benchmarking ontology-based query rewriting systems. In: AAAI (2013)Google Scholar
  15. 15.
    Kharlamov, E., Solomakhina, N., Özçep, Ö.L., Zheleznyakov, D., Hubauer, T., Lamparter, S., Roshchin, M., Soylu, A., Watson, S.: How semantic technologies can enhance data access at siemens energy. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 601–619. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Kharlamov, E. et al.: Optique 1.0: Semantic access to big data – The case of norwegian petroleum directorates FactPages. In: ISWC (Posters and Demos) (2013)Google Scholar
  17. 17.
    Kharlamov, E., et al.: Optique: Towards OBDA systems for industry. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 125–140. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Knoblock, C.A., et al.: Semi-automatically mapping structured sources into the semantic web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 375–390. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Lanti, D., Rezk, M., Slusnys, M., Xiao, G., Calvanese, D.: The NPD benchmark for OBDA systems. In: SSWS (2014)Google Scholar
  20. 20.
    Mora, J., Corcho, O.: Towards a systematic benchmarking of ontology-based query rewriting systems. In: ISWC (2014)Google Scholar
  21. 21.
    Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org
  22. 22.
    Papapanagiotou, P. et al.: Ronto: Relational to Ontology Schema Matching. AIS SIGSEMIS BULLETIN (2006)Google Scholar
  23. 23.
    Pinkel, C., Binnig, C., Kharlamov, E., Haase, P.: Pay as you go matching of relational schemata to OWL ontologies with incmap. In: ISWC, pp. 225–228 (2013)Google Scholar
  24. 24.
    Pinkel, C., Binnig, C., Kharlamov, E., Haase, P.: IncMap: Pay-as-you-go matching of relational schemata to OWL ontologies. In: OM (2013)Google Scholar
  25. 25.
    Pinkel, C., et al.: How to best find a partner? An evaluation of editing approaches to construct R2RML mappings. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 675–690. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  26. 26.
    Poess, M., Rabl, T., Caufield, B.: TPC-DI: the first industry benchmark for data integration. PVLDB 7(13), 1367–1378 (2014)Google Scholar
  27. 27.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)Google Scholar
  28. 28.
    Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: WWW (2014)Google Scholar
  29. 29.
    Rodriguez-Muro, M. et al.: Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. (in press) (2015)Google Scholar
  30. 30.
    Skjæveland, M.G., Lian, E.H., Horrocks, I.: Publishing the norwegian petroleum directorate’s FactPages as semantic web data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 162–177. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  31. 31.
    Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: Detecting and correcting conservativity principle violations in ontology-to-ontology mappings. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 1–16. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  32. 32.
    Tian, A., Sequeda, J.F., Miranker, D.P.: QODI: Query as context in automatic data integration. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 624–639. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christoph Pinkel
    • 1
  • Carsten Binnig
    • 2
    • 3
  • Ernesto Jiménez-Ruiz
    • 4
  • Wolfgang May
    • 5
  • Dominique Ritze
    • 6
  • Martin G. Skjæveland
    • 7
  • Alessandro Solimando
    • 8
  • Evgeny Kharlamov
    • 4
  1. 1.Fluid Operations AGWalldorfGermany
  2. 2.Brown UniversityProvidenceUSA
  3. 3.Baden-Wuerttemberg Cooperative State UniversityMannheimGermany
  4. 4.University of OxfordOxfordUK
  5. 5.Göttingen UniversityLower SaxonyGermany
  6. 6.University of MannheimMannheimGermany
  7. 7.University of OsloOsloNorway
  8. 8.Università di GenovaGenoaItaly

Personalised recommendations