Advertisement

Query Execution Optimization for Clients of Triple Pattern Fragments

  • Joachim Van Herwegen
  • Ruben Verborgh
  • Erik Mannens
  • Rik Van de Walle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9088)

Abstract

In order to reduce the server-side cost of publishing queryable Linked Data, Triple Pattern Fragments (tpf) were introduced as a simple interface to rdf triples. They allow for sparql query execution at low server cost, by partially shifting the load from servers to clients. The previously proposed query execution algorithm uses more http requests than necessary, and only makes partial use of the available metadata. In this paper, we propose a new query execution algorithm for a client communicating with a tpf server. In contrast to a greedy solution, we maintain an overview of the entire query to find the optimal steps for solving a given query. We show multiple cases in which our algorithm reaches solutions with far fewer http requests, without significantly increasing the cost in other cases. This improves the efficiency of common sparql queries against tpf interfaces, augmenting their viability compared to the more powerful, but more costly, sparql interface.

Keywords

Linked data sparql Query execution Query optimization 

References

  1. 1.
    Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF data management systems. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 197–212. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. 2.
    Aluç, G., Özsu, M.T., Daudjee, K., Hartig, O.: Chameleon-db: a workload-aware robust RDF data management system. Technical report CS-2013-10, University of Waterloo (2013). https://cs.uwaterloo.ca/~galuc/papers/chameleon-db-research.pdf
  3. 3.
    Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-querying infrastructure: ready for action? In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Feigenbaum, L., Williams, G.T., Clark, K.G., Torres, E.: SPARQL 1.1 protocol. Recommendation, World Wide Web Consortium (March 2013). http://www.w3.org/TR/sparql11-protocol/
  5. 5.
    Harris, S., Seaborne, A.: SPARQL 1.1 query language. Recommendation, World Wide Web Consortium (March 2013). http://www.w3.org/TR/sparql11-query/
  6. 6.
    Hartig, O.: An overview on execution strategies for linked data queries. Datenbank-Spektrum 13(2), 89–99 (2013)CrossRefGoogle Scholar
  7. 7.
    Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Martin, M., Unbehauen, J., Auer, S.: Improving the performance of semantic web applications with SPARQL query caching. In: The Semantic Web: Research and Applications (2010)Google Scholar
  9. 9.
    Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  10. 10.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. 11.
    Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization. In: Proceedings of the \(13^{\rm th}\) International Conference on Database Theory, pp. 4–33. ACM (2010)Google Scholar
  12. 12.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: Proceedings of the \(17^{\rm th}\) International Conference on World Wide Web, pp. 595–604 (2008)Google Scholar
  14. 14.
    Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Vander Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying datasets on the web with high availability. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180–196. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  15. 15.
    Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de Walle, R.: Web-scale querying through linked data fragments. In: Proceedings of the \(7^{\rm th}\) Workshop on Linked Data on the Web, April 2014Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joachim Van Herwegen
    • 1
  • Ruben Verborgh
    • 1
  • Erik Mannens
    • 1
  • Rik Van de Walle
    • 1
  1. 1.Multimedia Lab – Ghent University – iMindsLedeberg-GhentBelgium

Personalised recommendations