Heuristics for Fixing Common Errors in Deployed Microdata

  • Robert MeuselEmail author
  • Heiko Paulheim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9088)


Being promoted by major search engines such as Google, Yahoo!, Bing, and Yandex, Microdata embedded in web pages, especially using, has become one of the most important markup languages for the Web. However, deployed Microdata is most often not free from errors, which limits its practical use. In this paper, we use the WebDataCommons corpus of Microdata extracted from more than \(250\) million web pages for a quantitative analysis of common mistakes in Microdata provision. Since it is unrealistic that data providers will provide clean and correct data, we discuss a set of heuristics that can be applied on the data consumer side to fix many of those mistakes in a post-processing step. We apply those heuristics to provide an improved knowledge base constructed from the raw Microdata extraction.


Microdata Data quality Knowledge base construction 


  1. 1.
    Abedjan, Z., Gruetze, T., Jentzsch, A., Naumann, F.: Profiling and mining rdf data with prolod++. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 1198–1201. IEEE (2014)Google Scholar
  2. 2.
    Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data. In: Proceedings of the 21st International Conference on Information and Knowledge Management (CIKM), Maui, Hawaii, USA, pp. 1532–1536 (2012)Google Scholar
  3. 3.
    Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD laundromat: a uniform way of publishing other people’s dirty data. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 213–228. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., Völker, J.: Deployment of RDFa, microdata, and microformats on the web – a quantitative analysis. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 17–32. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Chen, S., Hong, D., Shen, V.: An experimental study on validation problems with existing html webpages. In: Proceedings of the 2005 International Conference on Internet Computing, ICOMP 2005 (2005)Google Scholar
  6. 6.
    Fürber, C., Hepp, M.: Swiqa-a semantic web information quality assessment framework. In: ECIS (2011)Google Scholar
  7. 7.
    Hickson, I., Kellogg, G., Tennison, J., Herman, I.: Microdata to rdf - second edition (2014).
  8. 8.
    Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: Linked Data on the Web (2010)Google Scholar
  9. 9.
    Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 747–758 (2014)Google Scholar
  10. 10.
    Lehmberg, O., Ritze, D., Ristoski, P., Eckert, K., Paulheim, H., Bizer, C.: Extending tables with data from over a million websites. In: Semantic Web Challenge (2014)Google Scholar
  11. 11.
    Meusel, R., Petrovski, P., Bizer, C.: The webdatacommons microdata, RDFa and microformat dataset series. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 277–292. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Mika, P.: Microformats and RDFa deployment across the web (2011).
  13. 13.
    Mika, P., Potter, T.: Metadata statistics for a large web corpus. In: LDOW 2012: Linked Data on the Web. CEUR Workshop Proceedings, vol. 937. (2012).
  14. 14.
    Patel-Schneider, P.F.: Analyzing (2014)Google Scholar
  15. 15.
    Petrovski, P., Bryl, V., Bizer, C.: Integrating product data from websites offering microdata markup. In: 4th Workshop on Data Extraction and Object Search (DEOS2014) @ WWW (2014)Google Scholar
  16. 16.
    Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Oops!(ontology pitfall scanner!): An on-line tool for ontology evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 10(2), 7–34 (2014)CrossRefGoogle Scholar
  17. 17.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  18. 18.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S., Hitzler, P.: Quality assessment methodologies for linked open data. Submitted Semant. Web J. (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Group Data and Web ScienceUniversity of MannheimMannheimGermany

Personalised recommendations