Advertisement

Language Recognition by Reversible Partitioned Cellular Automata

  • Kenichi MoritaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8996)

Abstract

We investigate the language accepting capability of one-dimensional reversible partitioned cellular automata (RPCAs). It is well known that bounded cellular automata (CAs) are equivalent to deterministic linear-bounded automata (DLBAs) in their language accepting capability. Here, we prove RPCAs are also equivalent to them by showing a construction method of an RPCA that simulates a given DLBA. Thus, the reversibility constraint does not decrease the ability of PCAs.

Notes

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 24500017.

References

  1. 1.
    Kutrib, M.: Cellular automata and language theory. In: Meyers, B. (ed.) Encyclopedia of Complexity and System Science, pp. 800–823. Springer-Verlag, Berlin (2009)CrossRefGoogle Scholar
  2. 2.
    Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular automata. Inform. Comput. 206, 1142–1151 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60, 354–367 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Morita, K.: Simulating reversible Turing machines and cyclic tag systems by one-dimensional reversible cellular automata. Theoret. Comput. Sci. 412, 3856–3865 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informaticae 110(1–4), 241–254 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Morita, K.: A deterministic two-way multi-head finite automaton can be converted into a reversible one with the same number of heads. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 29–43. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE Jpn. E72, 758–762 (1989)Google Scholar
  8. 8.
    Smith III, A.: Real-time language recognition by one-dimensional cellular automata. J. Comput. Syst. Sci. 6, 233–253 (1972)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations