Advertisement

Network Capacity Bound for Personalized Bipartite PageRank

  • Mieczysław A. Kłopotek
  • Sławomir T. Wierzchoń
  • Robert A. Kłopotek
  • Elżbieta A. Kłopotek
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 605)

Abstract

In this paper a novel notion of Bipartite PageRank is introduced and limits of authority flow in bipartite graphs are investigated. As a starting point we simplify the proof of a theorem on personalized random walk in unimodal graphs that is fundamental to graph nodes clustering. As a consequence we generalize this theorem to bipartite graphs.

Keywords

Bipartite graphs Social networks PageRank 

Notes

Acknowledgments

This research has been supported by the Polish State budget scientific research funds.

References

  1. 1.
    Bauckhage C (2008) Image tagging using pagerank over bipartite graphs. In: Proceedings of the 30th DAGM symposium on pattern recognition, pp 426–435. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-69321-5_43
  2. 2.
    Berkhin P (2005) A survey on PageRank computing. Internet Math 2:73–120MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chung F (2011) Pagerank as a discrete Green’s function. In: Ji L (ed) Geometry and analysis, I, Advanced lectures in mathematics (ALM), vol 17, pp 285–302. International Press of Boston, BostonGoogle Scholar
  4. 4.
    Deng H, Lyu MR, King I (2009) A generalized co-hits algorithm and its application to bipartite graphs. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’09, pp 239–248. ACM, New York, NY, USA, Paris, June 28–July 1 2009 doi: 10.1145/1557019.1557051
  5. 5.
    Frahm K, Georgeot B, Shepelyansky D (2011) Universal emergence of PageRank. J Phys A Math Theor 44:465101. doi: 10.1088/1751-8113/44/46/465101 CrossRefGoogle Scholar
  6. 6.
    Garcia E, Pedroche F, Romance M (2013) On the localization of the personalized PageRank of complex networks. Linear Algebra Appl 439:640–652MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Langville AN (2005) An annotated bibliography of papers about Markov chains and information retrieval. http://www.cofc.edu/langvillea/bibtexpractice.pdf
  8. 8.
    Langville AN, Meyer CD (2006) Google’s PageRank and beyond: the science of search engine rankings. Princeton University Press, PrincetonGoogle Scholar
  9. 9.
    Link S (2011) Eigenvalue-based bipartite ranking. Bachelorarbeit/bachelor thesis. http://www.pms.ifi.lmu.de/publikationen/#PA_Stephan.Link
  10. 10.
    Meghabghab G, Kandel A (2008) Search engines, link analysis, and user’s web behavior. A unifying web mining approach, Studies in computational intelligence, vol 99. Springer, New YorkGoogle Scholar
  11. 11.
    Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Technical Report 1999–66, Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/
  12. 12.
    Zachary W (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mieczysław A. Kłopotek
    • 1
    • 3
  • Sławomir T. Wierzchoń
    • 1
  • Robert A. Kłopotek
    • 2
  • Elżbieta A. Kłopotek
    • 4
  1. 1.Institute of Computer Science of Polish Academy of SciencesWarszawaPoland
  2. 2.International PhD. Programme at ICS PASWarszawaPoland
  3. 3.Institute of Computer Science of Natural and Human Sciences UniversitySiedlcePoland
  4. 4.m-BankWarszawaPoland

Personalised recommendations