New Dualities of Supersymmetric Gauge Theories pp 339-373 | Cite as
3d Superconformal Theories from Three-Manifolds
Chapter
First Online:
Abstract
We review here some aspects of the 3d \(\mathcal {N}=2\) SCFT’s that arise from the compactification of M5 branes on 3-manifolds.
Notes
Acknowledgments
It is a pleasure to thank Christopher Beem, Clay Córdova, Davide Gaiotto, and Sergei Gukov for discussions and advice during the writing of this review, and especially Andrew Neitzke and Jeorg Teschner for careful readings and comments.
References
- [1]Dimofte, T., Gaiotto, D., Gukov, S.: Gauge theories labelled by three-manifolds. arXiv:1108.4389
- [2]Cecotti, S., Cordova, C., Vafa, C.: Braids, walls, and mirrors. arXiv:1110.2115
- [3]Dimofte, T., Gaiotto, D., Gukov, S.: 3-manifolds and 3d indices. arXiv:1112.5179
- [4]Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. arXiv:1006.0977
- [5]Terashima, Y., Yamazaki, M.: SL(2, R) Chern-Simons Liouville, and gauge theory on duality walls. JHEP 1108, 135 (2011). arXiv:1103.5748
- [6]Dimofte, T., Gukov, S.: Chern-Simons theory and S-duality. arXiv:1106.4550
- [7]Dimofte, T., Gabella, M., Goncharov, A.B.: K-decompositions and 3d gauge theories. arXiv:1301.0192
- [8]Dimofte, T., Gaiotto, D., van der Veen, R.: RG domain walls and hybrid triangulations. arXiv:1304.6721
- [9]Cordova, C., Espahbodi, S., Haghighat, B., Rastogi, A., Vafa, C.: Tangles, generalized reidemeister moves, and three-dimensional mirror symmetry. arXiv:1211.3730
- [10]Fuji, H., Gukov, S., Stosic, M., Sułkowski, P.: 3d analogs of Argyres-Douglas theories and knot homologies. arXiv:1209.1416
- [11]Cordova, C., Jafferis, D.L.: Complex Chern-Simons from M5-branes on the squashed three-sphere. arXiv:1305.2891
- [12]Lee, S., Yamazaki, M.: 3d Chern-Simons theory from M5-branes. arXiv:1305.2429
- [13]Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010). arXiv:0906.3219 Google Scholar
- [14]Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N = 2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010). arXiv:0909.0945
- [15]Drukker, N., Gomis, J., Okuda, T., Teschner, J.: Gauge theory loop operators and Liouville theory. JHEP 1002, 057 (2010). arXiv:0909.1105
- [16]Hama, N., Hosomichi, K.: Seiberg-Witten theories on ellipsoids. arXiv:1206.6359
- [17]Gadde, A., Pomoni, E., Rastelli, L., Razamat, S.S.: S-duality and 2d topological QFT. JHEP 1003, 032 (2010). arXiv:0910.2225
- [18]Gadde, A., Rastelli, L., Razamat, S.S., Yan, W.: The 4d superconformal index from q-deformed 2d Yang-Mills. Phys. Rev. Lett. 106, 241602 (2011). arXiv:1104.3850
- [19]Gaiotto, D., Rastelli, L., Razamat, S.S.: Bootstrapping the superconformal index with surface defects. arXiv:1207.3577
- [20]Witten, E.: Fivebranes and knots. Quantum Topol. 3(1), 1–137 (2012). arXiv:1101.3216
- [21]Beem, C., Dimofte,T., Pasquetti, S.: Holomorphic blocks in three dimensions. arXiv:1211.1986
- [22]Drukker, N., Gaiotto, D., Gomis, J.: The virtue of defects in 4D gauge theories and 2D CFTs. arXiv:1003.1112
- [23]Hosomichi, K., Lee, S., Park, J.: AGT on the S-duality wall. JHEP 1012, 079 (2010). arXiv:1009.0340
- [24]Teschner, J., Vartanov, G.S.: 6j symbols for themodular double, quantum hyperbolic geometry, and supersymmetric gauge theories. arXiv:1202.4698
- [25]Gang, D., Koh, E., Lee, S., Park, J.: Superconformal index and 3d-3d correspondence for mapping cylinder/torus. arXiv:1305.0937
- [26]Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds. arXiv:1306.4320
- [27]Chung, H.-J., Dimofte, T., Gukov, S., Sułkowski, P.: 3d-3d correspondence revisited. arXiv:1405.3663
- [28]Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmuller theory. Publ. Math. Inst. Hautes Etudes Sci. 103, 1–211 (2006). arXiv:math/0311149v4 Google Scholar
- [29]Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin Systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013). arXiv:0907.3987 Google Scholar
- [30]Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks and snakes. arXiv:1209.0866
- [31]Jafferis, D., Yin, X.: A duality appetizer. arXiv:1103.5700
- [32]Gaiotto, D.: N = 2 dualities. JHEP 1208, 034 (2012). arXiv:0904.2715
- [33]Gukov, S., Iqbal, A., Kozcaz, C., Vafa, C.: Link homologies and the refined topological vertex. arXiv:0705.1368
- [34]Cadavid, A.C., Ceresole, A., D’Auria, R., Ferrara, S.: 11-dimensional supergravity compactified on Calabi-Yau threefolds. Phys. Lett. B357, 76–80 (1995). arXiv:hep-th/9506144v1 Google Scholar
- [35]Papadopoulos, G., Townsend, P.K.: Compactification of D = 11 supergravity on spaces of exceptional holonomy. Phys. Lett. B357, 300–306 (1995). arXiv:hep-th/9506150v2 Google Scholar
- [36]Gauntlett, J.P., Kim, N., Waldram, D.: M-fivebranes wrapped on supersymmetric cycles. Phys. Rev. D63, 126001 (2001). arXiv:hep-th/0012195v2
- [37]Anderson, M.T., Beem, C., Bobev, N., Rastelli, L.: Holographic uniformization. arXiv:1109.3724
- [38]Thurston, W.P.: Three dimensional manifolds, Kleinian groups, and hyperbolic geometry. Bull. AMS 6(3), 357–381 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
- [39]Mostow, G.: Strong rigidity of locally symmetric spaces (Ann. Math. Stud.), vol. 78. Princeton University Press, Princeton, NJ (1973)Google Scholar
- [40]Bershadsky, M., Sadov, V., Vafa, C.: D-branes and topological field theories. Nucl. Phys. B463, 420–434 (1996). arXiv:hep-th/9511222v1 Google Scholar
- [41]Gaiotto, D., Maldacena, J.: The gravity duals of N = 2 superconformal field theories. arXiv:0904.4466
- [42]Gaiotto, D., Witten, E.: S-duality of boundary conditions in N = 4 super Yang-Mills theory. Adv. Theor. Math. Phys. 13(2), 721–896 (2009). arXiv:0807.3720
- [43]Witten, E.: SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry. hep-th/0307041v3
- [44]Gaiotto, D.: Domain walls for two-dimensional renormalization group flows. arXiv:1201.0767
- [45]Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. arXiv:1006.0146
- [46]Cordova C., Neitzke, A.: Line defects, tropicalization, and multi-centered quiver quantum mechanics. arXiv:1308.6829
- [47]Gaiotto, D.,Witten, E.: Knot invariants from four-dimensional gauge theory. arXiv:1106.4789
- [48]Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299(1), 163–224 (2010). arXiv:0807.4723 Google Scholar
- [49]Nekrasov, N., Rosly, A., Shatashvili, S.: Darboux coordinates, Yang-Yang functional, and gauge theory. Nucl. Phys. Proc. Suppl. 216, 69–93 (2011). arXiv:1103.3919 Google Scholar
- [50]Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program. Curr. Dev. Math. 2006, 35–180 (2008). hep-th/0612073v2 Google Scholar
- [51]Axelrod, S., Pietra, S.D., Witten, E.: Geometric quantization of Chern-Simons gauge theory. J. Differ. Geom. 33(3), 787–902 (1991)zbMATHGoogle Scholar
- [52]Witten, E.: Quantization of Chern-Simons gauge theory with complex gauge group. Commun. Math. Phys. 137, 29–66 (1991)Google Scholar
- [53]Gukov, S.: Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Commun. Math. Phys. 255(3), 577–627 (2005). arXiv:hep-th/0306165v1 Google Scholar
- [54]Pasquetti, S.: Factorisation of N = 2 theories on the squashed 3-sphere. arXiv:1111.6905
- [55]Witten, E.: Analytic continuation of Chern-Simons theory. arXiv:1001.2933
- [56]Witten, E.: A new look at the path integral of quantum mechanics. arXiv:1009.6032
- [57]Kim, S.: The complete superconformal index for N = 6 Chern-Simons theory. Nucl. Phys. B821, 241–284 (2009). arXiv:0903.4172
- [58]Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general R-charge assignments. arXiv:1101.0557
- [59]Kapustin, A., Willett, B.: Generalized superconformal index for three dimensional field theories. arXiv:1106.2484
- [60]Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern-Simons theories with matter. JHEP 1003, 089 32 pp. (2010). arXiv:0909.4559
- [61]Hama, N., Hosomichi, K., Lee, S.: SUSY gauge theories on squashed three-spheres. arXiv:1102.4716
- [62]Cordova, C., Jafferis, D.L.: Five-dimensional maximally supersymmetric Yang-Mills in supergravity backgrounds. arXiv:1305.2886
- [63]Cecotti, S., Vafa, C.: Topological-anti-topological fusion. Nucl. Phys. B367(2), 359–461 (1991)MathSciNetCrossRefADSGoogle Scholar
- [64]Cecotti, S., Gaiotto, D., Vafa, C.: tt* geometry in 3 and 4 dimensions. arXiv:1312.1008
- [65]Benini, F., Nishioka, T., Yamazaki, M.: 4d Index to 3d Index and 2d TQFT. arXiv:1109.0283
- [66]Hikami, K.: Generalized volume conjecture and the A-polynomials—the Neumann-Zagier potential function as a classical limit of quantum invariant. J. Geom. Phys. 57(9), 1895–1940 (2007). arXiv:math/0604094v1
- [67]Dimofte, T., Gukov, S., Lenells, J., Zagier, D.: Exact results for perturbative Chern-Simons theory with complex gauge group. Commun. Number Theory Phys. 3(2), 363–443 (2009). arXiv:0903.2472 Google Scholar
- [68]Dimofte, T.: Quantum Riemann surfaces in Chern-Simons theory. arXiv:1102.4847
- [69]Garoufalidis, S.: The 3D index of an ideal triangulation and angle structures. arXiv:1208.1663
- [70]Garoufalidis, S., Hodgson, C.D., Rubinstein, J.H., Segerman, H.: 1-efficient triangulations and the index of a cusped hyperbolic 3-manifold. arXiv:1303.5278
- [71]Gang, D., Koh, E., Lee, K.: Superconformal index with duality domain wall. JHEP 10, 187 (2012). arXiv:1205.0069
- [72]Verlinde, H.: Conformal field theory, two-dimensional quantum gravity and quantization of Teichmüller space. Nucl. Phys. B337(3), 652–680 (1990)MathSciNetCrossRefADSGoogle Scholar
- [73]Intriligator, K., Seiberg, N.: Mirror symmetry in three dimensional gauge theories. Phys. Lett. B387, 513–519 (1996). arXiv:hep-th/9607207v1 Google Scholar
- [74]Aharony, O., Hanany, A., Intriligator, K., Seiberg, N., Strassler, M.J.: Aspects of N = 2 supersymmetric gauge theories in three dimensions. Nucl. Phys. B499(1–2), 67–99 (1997). arXiv:hep-th/9703110v1 Google Scholar
- [75]de Boer, J., Hori, K., Ooguri, H., Oz, Y., Yin, Z.: Mirror symmetry in three-dimensional gauge theories, SL(2, Z) and D-brane moduli spaces. Nucl. Phys. B493, 148–176 (1996). arXiv:hep-th/9612131v1
- [76]de Boer, J., Hori, K., Oz, Y.: Dynamics of N = 2 supersymmetric gauge theories in three dimensions. Nucl. Phys. B500, 163–191 (1997). arXiv:hep-th/9703100v3
- [77]Aharony, O., Razamat, S.S., Seiberg, N., Willett, B.: 3d dualities from 4d dualities. arXiv:1305.3924
- [78]Witten, E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B500, 3 (1997). arXiv:hep-th/9703166v1 Google Scholar
- [79]Gadde, A., Gukov, S., Putrov, P.: Walls, lines, and spectral dualities in 3d gauge theories. arXiv:1302.0015
- [80]Gaiotto, D., Witten, E.: Janus configurations, Chern-Simons couplings, and the theta-angle in N = 4 super Yang-Mills theory. JHEP 1006, 097 (2010). arXiv:0804.2907
- [81]Gaiotto, D., Witten, E.: Supersymmetric boundary conditions in N = 4 super Yang-Mills theory. J. Stat. Phys. 135, 789–855 (2009). arXiv:0804.2902
- [82]DeWolfe, O., Freedman, D.Z., Ooguri, H.: Holography and defect conformal field theories. Phys. Rev. D66, 025009 (2002). arXiv:hep-th/0111135v3
- [83]Neumann, W.D., Zagier, D.: Volumes of hyperbolic three-manifolds. Topology 24(3), 307–332 (1985)Google Scholar
- [84]Thurston, W.: The geometry and topology of three-manifolds. Lecture Notes at Princeton University, Princeton University Press, Princeton (1980)Google Scholar
- [85]Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe Ansatz. Nucl. Phys. B, Proc. Suppl. 192–193, 91–112 (2009). arXiv:0901.4744
- [86]Kashaev, R.: The quantum dilogarithm and Dehn twists in quantum Teichmüller theory, Integrable structures of exactly solvable two-dimensional models of quantum field theory (Kiev, 2000). NATO Sci. Ser. II Math. Phys. Chem. 35(2001), 211–221 (2000)Google Scholar
- [87]Teschner, J.: An analog of a modular functor from quantized Teichmuller theory. Handbook of Teichmuller Theory, vol. I, pp. 685–760 (2007). arXiv:math/0510174v4
Copyright information
© Springer International Publishing Switzerland 2016