Advertisement

3d Superconformal Theories from Three-Manifolds

  • Tudor DimofteEmail author
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

We review here some aspects of the 3d \(\mathcal {N}=2\) SCFT’s that arise from the compactification of M5 branes on 3-manifolds.

Notes

Acknowledgments

It is a pleasure to thank Christopher Beem, Clay Córdova, Davide Gaiotto, and Sergei Gukov for discussions and advice during the writing of this review, and especially Andrew Neitzke and Jeorg Teschner for careful readings and comments.

References

  1. [1]
    Dimofte, T., Gaiotto, D., Gukov, S.: Gauge theories labelled by three-manifolds. arXiv:1108.4389
  2. [2]
    Cecotti, S., Cordova, C., Vafa, C.: Braids, walls, and mirrors. arXiv:1110.2115
  3. [3]
    Dimofte, T., Gaiotto, D., Gukov, S.: 3-manifolds and 3d indices. arXiv:1112.5179
  4. [4]
    Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. arXiv:1006.0977
  5. [5]
    Terashima, Y., Yamazaki, M.: SL(2, R) Chern-Simons Liouville, and gauge theory on duality walls. JHEP 1108, 135 (2011). arXiv:1103.5748
  6. [6]
    Dimofte, T., Gukov, S.: Chern-Simons theory and S-duality. arXiv:1106.4550
  7. [7]
    Dimofte, T., Gabella, M., Goncharov, A.B.: K-decompositions and 3d gauge theories. arXiv:1301.0192
  8. [8]
    Dimofte, T., Gaiotto, D., van der Veen, R.: RG domain walls and hybrid triangulations. arXiv:1304.6721
  9. [9]
    Cordova, C., Espahbodi, S., Haghighat, B., Rastogi, A., Vafa, C.: Tangles, generalized reidemeister moves, and three-dimensional mirror symmetry. arXiv:1211.3730
  10. [10]
    Fuji, H., Gukov, S., Stosic, M., Sułkowski, P.: 3d analogs of Argyres-Douglas theories and knot homologies. arXiv:1209.1416
  11. [11]
    Cordova, C., Jafferis, D.L.: Complex Chern-Simons from M5-branes on the squashed three-sphere. arXiv:1305.2891
  12. [12]
    Lee, S., Yamazaki, M.: 3d Chern-Simons theory from M5-branes. arXiv:1305.2429
  13. [13]
    Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010). arXiv:0906.3219 Google Scholar
  14. [14]
    Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N = 2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010). arXiv:0909.0945
  15. [15]
    Drukker, N., Gomis, J., Okuda, T., Teschner, J.: Gauge theory loop operators and Liouville theory. JHEP 1002, 057 (2010). arXiv:0909.1105
  16. [16]
    Hama, N., Hosomichi, K.: Seiberg-Witten theories on ellipsoids. arXiv:1206.6359
  17. [17]
    Gadde, A., Pomoni, E., Rastelli, L., Razamat, S.S.: S-duality and 2d topological QFT. JHEP 1003, 032 (2010). arXiv:0910.2225
  18. [18]
    Gadde, A., Rastelli, L., Razamat, S.S., Yan, W.: The 4d superconformal index from q-deformed 2d Yang-Mills. Phys. Rev. Lett. 106, 241602 (2011). arXiv:1104.3850
  19. [19]
    Gaiotto, D., Rastelli, L., Razamat, S.S.: Bootstrapping the superconformal index with surface defects. arXiv:1207.3577
  20. [20]
    Witten, E.: Fivebranes and knots. Quantum Topol. 3(1), 1–137 (2012). arXiv:1101.3216
  21. [21]
    Beem, C., Dimofte,T., Pasquetti, S.: Holomorphic blocks in three dimensions. arXiv:1211.1986
  22. [22]
    Drukker, N., Gaiotto, D., Gomis, J.: The virtue of defects in 4D gauge theories and 2D CFTs. arXiv:1003.1112
  23. [23]
    Hosomichi, K., Lee, S., Park, J.: AGT on the S-duality wall. JHEP 1012, 079 (2010). arXiv:1009.0340
  24. [24]
    Teschner, J., Vartanov, G.S.: 6j symbols for themodular double, quantum hyperbolic geometry, and supersymmetric gauge theories. arXiv:1202.4698
  25. [25]
    Gang, D., Koh, E., Lee, S., Park, J.: Superconformal index and 3d-3d correspondence for mapping cylinder/torus. arXiv:1305.0937
  26. [26]
    Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds. arXiv:1306.4320
  27. [27]
    Chung, H.-J., Dimofte, T., Gukov, S., Sułkowski, P.: 3d-3d correspondence revisited. arXiv:1405.3663
  28. [28]
    Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmuller theory. Publ. Math. Inst. Hautes Etudes Sci. 103, 1–211 (2006). arXiv:math/0311149v4 Google Scholar
  29. [29]
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin Systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013). arXiv:0907.3987 Google Scholar
  30. [30]
    Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks and snakes. arXiv:1209.0866
  31. [31]
    Jafferis, D., Yin, X.: A duality appetizer. arXiv:1103.5700
  32. [32]
    Gaiotto, D.: N = 2 dualities. JHEP 1208, 034 (2012). arXiv:0904.2715
  33. [33]
    Gukov, S., Iqbal, A., Kozcaz, C., Vafa, C.: Link homologies and the refined topological vertex. arXiv:0705.1368
  34. [34]
    Cadavid, A.C., Ceresole, A., D’Auria, R., Ferrara, S.: 11-dimensional supergravity compactified on Calabi-Yau threefolds. Phys. Lett. B357, 76–80 (1995). arXiv:hep-th/9506144v1 Google Scholar
  35. [35]
    Papadopoulos, G., Townsend, P.K.: Compactification of D = 11 supergravity on spaces of exceptional holonomy. Phys. Lett. B357, 300–306 (1995). arXiv:hep-th/9506150v2 Google Scholar
  36. [36]
    Gauntlett, J.P., Kim, N., Waldram, D.: M-fivebranes wrapped on supersymmetric cycles. Phys. Rev. D63, 126001 (2001). arXiv:hep-th/0012195v2
  37. [37]
    Anderson, M.T., Beem, C., Bobev, N., Rastelli, L.: Holographic uniformization. arXiv:1109.3724
  38. [38]
    Thurston, W.P.: Three dimensional manifolds, Kleinian groups, and hyperbolic geometry. Bull. AMS 6(3), 357–381 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Mostow, G.: Strong rigidity of locally symmetric spaces (Ann. Math. Stud.), vol. 78. Princeton University Press, Princeton, NJ (1973)Google Scholar
  40. [40]
    Bershadsky, M., Sadov, V., Vafa, C.: D-branes and topological field theories. Nucl. Phys. B463, 420–434 (1996). arXiv:hep-th/9511222v1 Google Scholar
  41. [41]
    Gaiotto, D., Maldacena, J.: The gravity duals of N = 2 superconformal field theories. arXiv:0904.4466
  42. [42]
    Gaiotto, D., Witten, E.: S-duality of boundary conditions in N = 4 super Yang-Mills theory. Adv. Theor. Math. Phys. 13(2), 721–896 (2009). arXiv:0807.3720
  43. [43]
    Witten, E.: SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry. hep-th/0307041v3
  44. [44]
    Gaiotto, D.: Domain walls for two-dimensional renormalization group flows. arXiv:1201.0767
  45. [45]
    Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. arXiv:1006.0146
  46. [46]
    Cordova C., Neitzke, A.: Line defects, tropicalization, and multi-centered quiver quantum mechanics. arXiv:1308.6829
  47. [47]
    Gaiotto, D.,Witten, E.: Knot invariants from four-dimensional gauge theory. arXiv:1106.4789
  48. [48]
    Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299(1), 163–224 (2010). arXiv:0807.4723 Google Scholar
  49. [49]
    Nekrasov, N., Rosly, A., Shatashvili, S.: Darboux coordinates, Yang-Yang functional, and gauge theory. Nucl. Phys. Proc. Suppl. 216, 69–93 (2011). arXiv:1103.3919 Google Scholar
  50. [50]
    Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program. Curr. Dev. Math. 2006, 35–180 (2008). hep-th/0612073v2 Google Scholar
  51. [51]
    Axelrod, S., Pietra, S.D., Witten, E.: Geometric quantization of Chern-Simons gauge theory. J. Differ. Geom. 33(3), 787–902 (1991)zbMATHGoogle Scholar
  52. [52]
    Witten, E.: Quantization of Chern-Simons gauge theory with complex gauge group. Commun. Math. Phys. 137, 29–66 (1991)Google Scholar
  53. [53]
    Gukov, S.: Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Commun. Math. Phys. 255(3), 577–627 (2005). arXiv:hep-th/0306165v1 Google Scholar
  54. [54]
    Pasquetti, S.: Factorisation of N = 2 theories on the squashed 3-sphere. arXiv:1111.6905
  55. [55]
    Witten, E.: Analytic continuation of Chern-Simons theory. arXiv:1001.2933
  56. [56]
    Witten, E.: A new look at the path integral of quantum mechanics. arXiv:1009.6032
  57. [57]
    Kim, S.: The complete superconformal index for N = 6 Chern-Simons theory. Nucl. Phys. B821, 241–284 (2009). arXiv:0903.4172
  58. [58]
    Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general R-charge assignments. arXiv:1101.0557
  59. [59]
    Kapustin, A., Willett, B.: Generalized superconformal index for three dimensional field theories. arXiv:1106.2484
  60. [60]
    Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern-Simons theories with matter. JHEP 1003, 089 32 pp. (2010). arXiv:0909.4559
  61. [61]
    Hama, N., Hosomichi, K., Lee, S.: SUSY gauge theories on squashed three-spheres. arXiv:1102.4716
  62. [62]
    Cordova, C., Jafferis, D.L.: Five-dimensional maximally supersymmetric Yang-Mills in supergravity backgrounds. arXiv:1305.2886
  63. [63]
    Cecotti, S., Vafa, C.: Topological-anti-topological fusion. Nucl. Phys. B367(2), 359–461 (1991)MathSciNetCrossRefADSGoogle Scholar
  64. [64]
    Cecotti, S., Gaiotto, D., Vafa, C.: tt* geometry in 3 and 4 dimensions. arXiv:1312.1008
  65. [65]
    Benini, F., Nishioka, T., Yamazaki, M.: 4d Index to 3d Index and 2d TQFT. arXiv:1109.0283
  66. [66]
    Hikami, K.: Generalized volume conjecture and the A-polynomials—the Neumann-Zagier potential function as a classical limit of quantum invariant. J. Geom. Phys. 57(9), 1895–1940 (2007). arXiv:math/0604094v1
  67. [67]
    Dimofte, T., Gukov, S., Lenells, J., Zagier, D.: Exact results for perturbative Chern-Simons theory with complex gauge group. Commun. Number Theory Phys. 3(2), 363–443 (2009). arXiv:0903.2472 Google Scholar
  68. [68]
    Dimofte, T.: Quantum Riemann surfaces in Chern-Simons theory. arXiv:1102.4847
  69. [69]
    Garoufalidis, S.: The 3D index of an ideal triangulation and angle structures. arXiv:1208.1663
  70. [70]
    Garoufalidis, S., Hodgson, C.D., Rubinstein, J.H., Segerman, H.: 1-efficient triangulations and the index of a cusped hyperbolic 3-manifold. arXiv:1303.5278
  71. [71]
    Gang, D., Koh, E., Lee, K.: Superconformal index with duality domain wall. JHEP 10, 187 (2012). arXiv:1205.0069
  72. [72]
    Verlinde, H.: Conformal field theory, two-dimensional quantum gravity and quantization of Teichmüller space. Nucl. Phys. B337(3), 652–680 (1990)MathSciNetCrossRefADSGoogle Scholar
  73. [73]
    Intriligator, K., Seiberg, N.: Mirror symmetry in three dimensional gauge theories. Phys. Lett. B387, 513–519 (1996). arXiv:hep-th/9607207v1 Google Scholar
  74. [74]
    Aharony, O., Hanany, A., Intriligator, K., Seiberg, N., Strassler, M.J.: Aspects of N = 2 supersymmetric gauge theories in three dimensions. Nucl. Phys. B499(1–2), 67–99 (1997). arXiv:hep-th/9703110v1 Google Scholar
  75. [75]
    de Boer, J., Hori, K., Ooguri, H., Oz, Y., Yin, Z.: Mirror symmetry in three-dimensional gauge theories, SL(2, Z) and D-brane moduli spaces. Nucl. Phys. B493, 148–176 (1996). arXiv:hep-th/9612131v1
  76. [76]
    de Boer, J., Hori, K., Oz, Y.: Dynamics of N = 2 supersymmetric gauge theories in three dimensions. Nucl. Phys. B500, 163–191 (1997). arXiv:hep-th/9703100v3
  77. [77]
    Aharony, O., Razamat, S.S., Seiberg, N., Willett, B.: 3d dualities from 4d dualities. arXiv:1305.3924
  78. [78]
    Witten, E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B500, 3 (1997). arXiv:hep-th/9703166v1 Google Scholar
  79. [79]
    Gadde, A., Gukov, S., Putrov, P.: Walls, lines, and spectral dualities in 3d gauge theories. arXiv:1302.0015
  80. [80]
    Gaiotto, D., Witten, E.: Janus configurations, Chern-Simons couplings, and the theta-angle in N = 4 super Yang-Mills theory. JHEP 1006, 097 (2010). arXiv:0804.2907
  81. [81]
    Gaiotto, D., Witten, E.: Supersymmetric boundary conditions in N = 4 super Yang-Mills theory. J. Stat. Phys. 135, 789–855 (2009). arXiv:0804.2902
  82. [82]
    DeWolfe, O., Freedman, D.Z., Ooguri, H.: Holography and defect conformal field theories. Phys. Rev. D66, 025009 (2002). arXiv:hep-th/0111135v3
  83. [83]
    Neumann, W.D., Zagier, D.: Volumes of hyperbolic three-manifolds. Topology 24(3), 307–332 (1985)Google Scholar
  84. [84]
    Thurston, W.: The geometry and topology of three-manifolds. Lecture Notes at Princeton University, Princeton University Press, Princeton (1980)Google Scholar
  85. [85]
    Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe Ansatz. Nucl. Phys. B, Proc. Suppl. 192193, 91–112 (2009). arXiv:0901.4744
  86. [86]
    Kashaev, R.: The quantum dilogarithm and Dehn twists in quantum Teichmüller theory, Integrable structures of exactly solvable two-dimensional models of quantum field theory (Kiev, 2000). NATO Sci. Ser. II Math. Phys. Chem. 35(2001), 211–221 (2000)Google Scholar
  87. [87]
    Teschner, J.: An analog of a modular functor from quantized Teichmuller theory. Handbook of Teichmuller Theory, vol. I, pp. 685–760 (2007). arXiv:math/0510174v4

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Trinity CollegeCambridgeUK

Personalised recommendations