Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 434 Accesses

Abstract

The main research topic of this thesis are the so-called GZK neutrinos. Shortly after the discovery of the Cosmic Microwave Background (CMB) an interaction between this omnipresent photon radiation and Ultra-High Energy Cosmic Rays (UHECRs) was predicted in the mid sixties by Greisen [1], Zatsepin and Kuzmin [2], named the GZK mechanism. In this interaction, pions are generated with a resonance in the cross section for cosmic ray energies slightly above the production threshold. Due to the resonance, the mean free path of cosmic rays with sufficient energy is reduced to some tens of Mpc. Since no source candidates of such high energy cosmic rays have been observed within this distance, a cutoff in the cosmic rays spectrum is expected. Furthermore, a guaranteed flux of neutrinos was predicted by Berezinsky and Zatsepin in 1968 [3] to result from the GZK mechanism. This flux is a decay product from the generated pions and is estimated to be very small. Interactions of neutrinos from this flux are expected to happen at a rate of less than once per year in one gigaton of target material. Therefore, extremely large detector volumes are needed to investigate the GZK neutrino flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966)

    Article  ADS  Google Scholar 

  2. G.T. Zatsepin, V.A. Kuzmin, Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78–80 (1966)

    ADS  Google Scholar 

  3. V. Beresinsky, G. Zatsepin, Cosmic rays at ultra high energies (neutrino?). Phys. Lett. B 28(6), 423–424 (1969)

    Article  ADS  Google Scholar 

  4. A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  5. R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Cosmic black-body radiation. Astrophys. J. 142, 414 (1965)

    Article  ADS  Google Scholar 

  6. G.F. Hinshaw et al., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological results. ApJS (2012)

    Google Scholar 

  7. R. Engel, D. Seckel, T. Stanev, Neutrinos from propagation of ultrahigh energy protons. Phys. Rev. D 64, 093010 (2001)

    Article  ADS  Google Scholar 

  8. K.K. Andersen, S.R. Klein, High energy cosmic-ray interactions with particles from the sun. Phys. Rev. D 83, 103519 (2011)

    Article  ADS  Google Scholar 

  9. R. Abbasi et al., Measurement of the flux of ultra high energy cosmic rays by the stereo technique. Astropart. Phys. 32(1), 53–60 (2009)

    Article  ADS  Google Scholar 

  10. Pierre Auger Collaboration, J. Abraham et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys. Lett. B 685(4–5), 239–246 (2010)

    Google Scholar 

  11. D. Allard et al., Cosmogenic neutrinos from the propagation of ultrahigh energy nuclei. J. Cosmol. Astropart. Phys. 2006(09), 005 (2006)

    Google Scholar 

  12. Pierre Auger Collaboration, A. Letessier-Selvon et al., Highlights from the Pierre Auger Observatory, Braz. J. Phys. (2014). http://xxx.lanl.gov/abs/1310.4620. arXiv:1310.4620

  13. Telescope Array Collaboration, P. Tinyakov et al., Latest results from the telescope array. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 742, 29–34 (2014)

    Google Scholar 

  14. A. Bell, Cosmic ray acceleration. Astropart. Phys. 43, 56–70 (2013)

    Article  ADS  Google Scholar 

  15. A. Hillas, Where do 1019 eV cosmic rays come from? Nucl. Phys. B Proc. Suppl. 136, 39–146 (2004) (CRIS 2004 proceedings of the cosmic ray international seminars: GZK and surroundings)

    Google Scholar 

  16. A.M. Hillas, The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22(1), 425–444 (1984)

    Article  ADS  Google Scholar 

  17. J. Abraham et al., Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory. Astropart. Phys. 31(6), 399–406 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Yüksel, M.D. Kistler, J.F. Beacom, A.M. Hopkins, Revealing the high-redshift star formation rate with gamma-ray bursts. Astrophys. J. Lett. 683(1), L5 (2008)

    Google Scholar 

  19. M. Ahlers, F. Halzen, Minimal cosmogenic neutrinos. Phys. Rev. D 86, 083010 (2012)

    Article  ADS  Google Scholar 

  20. Fermi LAT Collaboration, A.A. Abdo et al., Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi large area telescope data. Phys. Rev. Lett. 104, 101101 (2010)

    Google Scholar 

  21. M. Ahlers et al., GZK neutrinos after the Fermi-LAT diffuse photon flux measurement. Astropart. Phys. 34(2), 106–115 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Meures .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meures, T. (2015). The GZK Neutrino Flux. In: Development of a Sub-glacial Radio Telescope for the Detection of GZK Neutrinos. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18756-3_2

Download citation

Publish with us

Policies and ethics