Adaptive Hit or Miss Transform

  • Vladimir Ćurić
  • Sébastien Lefèvre
  • Cris L. Luengo Hendriks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9082)


The Hit or Miss Transform is a fundamental morphological operator, and can be used for template matching. In this paper, we present a framework for adaptive Hit or Miss Transform, where structuring elements are adaptive with respect to the input image itself. We illustrate the difference between the new adaptive Hit or Miss Transform and the classical Hit or Miss Transform. As an example of its usefulness, we show how the new adaptive Hit or Miss Transform can detect particles in single molecule imaging.


Hit or Miss Transform Adaptive morphologya Adaptive structuring elements Template matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matheron, G.: Random sets and integral geometry. Willey, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Serra, J.: Image analysis and mathematical morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  3. 3.
    Serra, J.: Image analysis and mathematical morphology. Theoretical advances, vol. 2. Academic Press, New York (1988)Google Scholar
  4. 4.
    Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image and Vision Computing 25(4), 395–404 (2007)CrossRefGoogle Scholar
  5. 5.
    Debayle, J., Pinoli, J.: General adaptive neighborhood image processing – part I: Introduction and theoretical aspects. Journal of Mathematical Imaging and Vision 25(2), 245–266 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Tankyevych, O., Talbot, H., Dokládal, P.: Curvilinear morpho-Hessian filter. In: Proc. of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1011–1014 (2008)Google Scholar
  7. 7.
    Angulo, J., Velasco-Forero, S.: Structurally adaptive mathematical morphology based on nonlinear scale-space decompositions. Image Analysis & Stereology 30(2), 111–122 (2011)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Verdú-Monedero, R., Angulo, J., Serra, J.: Anisotropic morphological filters with spatially-variant structuring elements based on image-dependent gradient fields. IEEE Transactions on Image Processing 20(1), 200–212 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ćurić, V., Luengo Hendriks, C.L., Borgefors, G.: Salience adaptive structuring elements. IEEE Journal of Selected Topics in Signal Processing 6(7), 809–819 (2012)CrossRefGoogle Scholar
  10. 10.
    Landström, A., Thurley, M.J.: Adaptive morphology using tensor-based elliptical structuring elements. Pattern Recognition Letters 34(12), 1416–1422 (2013)CrossRefGoogle Scholar
  11. 11.
    Roerdink, J.B.T.M.: Adaptive and group invariance in mathematical morphology. In: Proc. of IEEE International Conference on Image Processing, pp. 2253–2256 (2009)Google Scholar
  12. 12.
    Bouaynaya, N., Charif-Chefchaouni, M., Schonfeld, D.: Theoretical foundations of spatially-variant mathematical morphology part I: Binary images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(5), 823–836 (2008)CrossRefGoogle Scholar
  13. 13.
    Bouaynaya, N., Schonfeld, D.: Theoretical foundations of spatially-variant mathematical morphology part II: Gray-level images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(5), 837–850 (2008)CrossRefGoogle Scholar
  14. 14.
    Velasco-Forero, S., Angulo, J.: On nonlocal mathematical morphology. In: Proceedings of the International Symposium on Mathematical Morphology, pp. 219–230. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Maragos, P., Vachier, C.: Overview of adaptive morphology: Trends and perspectives. In: Proceedings of the International Conference on Image Processing, pp. 2241–2244. IEEE (2009)Google Scholar
  16. 16.
    Ćurić, V., Landström, A., Thurley, M.J., Luengo Hendriks, C.L.: Adaptive mathematical morphology – A survey of the field. Pattern Recognition Letters 47, 18–28 (2014)CrossRefGoogle Scholar
  17. 17.
    Perret, B., Lefèvre, S., Collet, C.: A robust hit-or-miss transform for template matching applied to very noisy astronomical images. Pattern Recognition 42(11), 2470–2480 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Weber, J., Tabbone, S.: Symbol spotting for technical documents: An efficient template-matching approach. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 669–672 (2012)Google Scholar
  19. 19.
    Lefèvre, S., Weber, J.: Automatic building extraction in VHR images using advanced morphological operators. In: Proceedings of the Urban Remote Sensing Joint Event, pp. 1–5. IEEE (2007)Google Scholar
  20. 20.
    Murray, P., Marshall, S.: A review of recent advances in the hit-or-miss transform. Advances in Imaging and Electron Physics 175, 221–282 (2012)CrossRefGoogle Scholar
  21. 21.
    Lefèvre, S., Aptoula, E., Perret, B., Weber, J.: Morphological template matching in color images. In: Advances in Low-Level Color Image Processing, pp. 241–277. Springer Netherlands (2014)Google Scholar
  22. 22.
    Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms – part I: Unified theory. Pattern Recognition 40(2), 635–647 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Soille, P.: Advances in the analysis of topographic features on discrete images. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 175–186. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Angulo, J.: Morphological bilateral filtering and spatially-variant adaptive structuring functions. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 212–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Ćurić, V., Hendriks, C.L.L.: Salience-based parabolic structuring functions. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 183–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Ćurić, V., Luengo Hendriks, C.L.: Adaptive structuring elements based on salience information. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 321–328. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Rosin, P., West, G.: Salience distance transforms. Graphical Models and Image Processing 57(6), 483–521 (1995)CrossRefzbMATHGoogle Scholar
  28. 28.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 679–698 (1986)Google Scholar
  29. 29.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)CrossRefGoogle Scholar
  30. 30.
    Weber, J., Lefèvre, S.: Spatial and spectral morphological template matching. Image and Vision Computing 30(12), 934–945 (2012)CrossRefGoogle Scholar
  31. 31.
    Smal, I., Loog, M., Niessen, W., Meijering, E.: Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Transactions on Medical Imaging 29(2), 282–301 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vladimir Ćurić
    • 1
  • Sébastien Lefèvre
    • 2
  • Cris L. Luengo Hendriks
    • 3
  1. 1.Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
  2. 2.IRISAUniversity of Bretagne-SudVannesFrance
  3. 3.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations