Advertisement

Fast Estimation of Intrinsic Volumes in 3D Gray Value Images

  • Michael Godehardt
  • Andreas Jablonski
  • Oliver Wirjadi
  • Katja Schladitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9082)

Abstract

The intrinsic volumes or their densities are versatile structural characteristics that can be estimated efficiently from digital image data, given a segmentation yielding the structural component of interest as foreground. In this contribution, Ohser’s algorithm is generalized to operate on integer gray value images. The new algorithm derives the intrinsic volumes for each possible global gray value threshold in the image. It is highly efficient since it collects all neccesary structural information in a single pass through the image.

The novel algorithm is well suited for computing the Minkowski functions of the parallel body if combined with the Euclidean distance transformation. This application scenario is demonstrated by means of computed tomography image data of polar ice samples. Moreover, the algorithm is applied to the problem of threshold selection in computed tomography images of material microstructures.

Keywords

Intrinsic volumes Gray value images Minkowsi functions Connectivity analysis Segmentation Microstructure analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications, 2nd edn. Wiley, Chichester (1995)zbMATHGoogle Scholar
  2. 2.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ohser, J., Redenbach, C., Schladitz, K.: Mesh free estimation of the structure model index. Image Analysis and Stereology 28(3), 179–186 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Schladitz, K., Redenbach, C., Sych, T., Godehardt, M.: Model based estimation of geometric characteristics of open foams. Methodology and Computing in Applied Probability, pp. 1011–1032 (2012)Google Scholar
  5. 5.
    Vogel, H.J.: Morphological determination of pore connectivity as a function of pore size using serial sections. European Journal of Soil Science 48(3), 365–377 (1997)CrossRefGoogle Scholar
  6. 6.
    Mecke, K.: Additivity, convexity, and beyond: Application of minkowski functionals in statistical physics. In: Mecke, K.R., Stoyan, D. (eds.) Statistical Physics and Spatial Statistics. LNP, vol. 554, pp. 111–184. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Ohser, J., Nagel, W., Schladitz, K.: Miles formulae for Boolean models observed on lattices. Image Anal. Stereol. 28(2), 77–92 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ohser, J., Schladitz, K.: 3d Images of Materials Structures – Processing and Analysis. Wiley VCH, Weinheim (2009)CrossRefGoogle Scholar
  9. 9.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Systems, Man and Cybernetics 9, 62–66 (1979)CrossRefGoogle Scholar
  10. 10.
    Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics 8(8), 630–632 (1978)CrossRefGoogle Scholar
  11. 11.
    Schladitz, K., Ohser, J., Nagel, W.: Measurement of intrinsic volumes of sets observed on lattices. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 247–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Freitag, J., Wilhelms, F., Kipfstuhl, S.: Microstructure-dependent densification of polar firn derived from x-ray microtomography. Journal of Glaciology 50(169), 243–250 (2004)CrossRefGoogle Scholar
  13. 13.
    Freitag, J., Kipfstuhl, S., Faria, S.H.: The connectivity of crystallite agglomerates in low-density firn at Kohnen station, Dronning Maud land, Antarctica. Ann. Glaciol. 49, 114–120 (2008)CrossRefGoogle Scholar
  14. 14.
    Redenbach, C., Särkkä, A., Freitag, J., Schladitz, K.: Anisotropy analysis of pressed point processes. Advances in Statistical Analysis 93(3), 237–261 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kronenberger, M., Wirjadi, O., Freitag, J., Hagen, H.: Gaussian curvature using fundamental forms for binary voxel data. Graphical Models (accepted, 2015)Google Scholar
  16. 16.
    Wirjadi, O., Godehardt, M., Schladitz, K., Wagner, B., Rack, A., Gurka, M., Nissle, S., Noll, A.: Characterization of multilayer structures in fiber reinforced polymer employing synchrotron and laboratory X-ray CT. International Journal of Materials Research 105(7), 645–654 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Godehardt
    • 1
  • Andreas Jablonski
    • 1
  • Oliver Wirjadi
    • 1
  • Katja Schladitz
    • 1
  1. 1.Fraunhofer-Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany

Personalised recommendations