Exact Linear Time Euclidean Distance Transforms of Grid Line Sampled Shapes

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9082)

Abstract

We propose a method for computing, in linear time, the exact Euclidean distance transform of sets of points s.t. one coordinate of a point can be assigned any real value, whereas other coordinates are restricted to discrete sets of values. The proposed distance transform is applicable to objects represented by grid line sampling, and readily provides sub-pixel precise distance values. The algorithm is easy to implement; we present complete pseudo code. The method is easy to parallelize and extend to higher dimensional data. We present two ways of obtaining approximate grid line sampled representations, and evaluate the proposed EDT on synthetic examples. The method is competitive w.r.t. state-of-the-art methods for sub-pixel precise distance evaluation.

Keywords

Exact Euclidean distance transform Grid line sampling Shape representation Sub-pixel precision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciesielski, K.C., Chen, X., Udupa, J.K., Grevera, G.J.: Linear time algorithms for exact distance transform. Journal Math. Imaging and Vision 39(3), 193–209 (2011)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: A comparative survey. ACM Computing Surveys 40(1), 2 (2008)CrossRefGoogle Scholar
  3. 3.
    Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Tech. rep., Cornell University (2004)Google Scholar
  4. 4.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory of Computing 8(1), 415–428 (2012)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Freeman, H.: On the encoding of arbitrary geometric configurations. Electronic Computers, IRE Trans. (2), 260–268 (1961)Google Scholar
  6. 6.
    Gustavson, S., Strand, R.: Anti-aliased Euclidean distance transform. Pattern Recognition Letters 32(2), 252–257 (2011)CrossRefGoogle Scholar
  7. 7.
    Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Processing Letters 58(3), 129–133 (1996)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Jones, M., Baerentzen, J., Sramek, M.: 3D distance fields: A survey of techniques and applications. IEEE Trans. Visualization Comp. Graphics 12(4), 581–599 (2006)CrossRefGoogle Scholar
  9. 9.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  10. 10.
    Kimmel, R., Kiryati, N., Bruckstein, A.: Sub-pixel distance maps and weighted distance transforms. Journal Math. Imaging and Vision 6(2-3), 223–233 (1996)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Krissian, K., Westin, C.F.: Fast sub-voxel re-initialization of the distance map for level set methods. Pattern Recognition Letters 26(10), 1532–1542 (2005)CrossRefGoogle Scholar
  12. 12.
    Linnér, E., Strand, R.: Anti-aliased Euclidean distance transform on 3D sampling lattices. In: Proc. Discrete Geom. for Comp. Imagery., Siena, Italy, pp. 88–98 (2014)Google Scholar
  13. 13.
    Linnér, E., Strand, R.: A graph-based implementation of the anti-aliased Euclidean distance transform. In: Proc. Int. Conf. Pattern Recognition, Stockholm, Sweden, pp. 1025–1030 (2014)Google Scholar
  14. 14.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)CrossRefGoogle Scholar
  15. 15.
    Malmberg, F., Lindblad, J., Sladoje, N., Nyström, I.: A graph-based framework for sub-pixel image segmentation. Theoretical Comp. Sci. 412(15), 1338–1349 (2011)CrossRefMATHGoogle Scholar
  16. 16.
    Maurer Jr., C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)CrossRefGoogle Scholar
  17. 17.
    Meijster, A., Roerdink, J.B., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Proc. Math. Morph. and its Appl. to Image Signal Process. Comput. Imaging and Vision, vol. 18, pp. 331–340. Springer (2000)Google Scholar
  18. 18.
    Rockett, P.: The accuracy of sub-pixel localisation in the canny edge detector. In: Proc. British Machine Vision Conf., pp. 1–10 (1999)Google Scholar
  19. 19.
    Sladoje, N., Lindblad, J.: High-precision boundary length estimation by utilizing gray-level information. IEEE Trans. Patt. Anal. Mach. Intell. 31(2), 357–363 (2009)CrossRefGoogle Scholar
  20. 20.
    Sladoje, N., Lindblad, J.: The coverage model and its use in image processing. In: Zbornik Radova, vol. (23), pp. 39–117. Matematički institut SANU (2012)Google Scholar
  21. 21.
    Stelldinger, P.: Image digitization and its influence on shape properties in finite dimensions, vol. 312. Ph.D. thesis. IOS Press (2008)Google Scholar
  22. 22.
    Vacavant, A., Coeurjolly, D., Tougne, L.: Distance transformation on two-dimensional irregular isothetic grids. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 238–249. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  3. 3.Mathematical InstituteSerbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations