Ranking Orientation Responses of Path Operators: Motivations, Choices and Algorithmics

  • Odyssée Merveille
  • Hugues Talbot
  • Laurent Najman
  • Nicolas Passat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9082)


A new morphological operator, namely RORPO (Ranking Orientation Responses of Path Operators), was recently introduced as a semi-global, morphological alternative to the local, Hessian-based operators for thin structure filtering in 3D images. In this context, a previous study has already provided experimental proof of its relevance by comparison to such differential operators. In this article, we present a methodological study of RORPO, which completes the presentation of this new morphological filter. In particular, we expose the motivations of RORPO with respect to previous morphological strategies; we present algorithmic developments of this filter and the underlying robust path operator; and we discuss computational issues related to parametricity and time efficiency. We conclude this study by a discussion on the methodological and applicative potentiality of RORPO in various fields of image processing and analysis.


Antiextensive filtering Robust path openings Thin structure detection 3D grey-level imaging Vesselness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Talbot, H.: Étude des directions en analyse d’image. Habilitation Thesis, Université Paris-Est (2013) (In English)Google Scholar
  2. 2.
    Merveille, O., Talbot, H., Najman, L., Passat, N.: Tubular structure filtering by ranking orientation responses of path operators. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 203–218. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing 10(7), 1010–1019 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Tankyevych, O., Talbot, H., Dokládal, P.: Curvilinear morpho-Hessian filter. In: Proc. ISBI, pp. 1011–1014 (2008)Google Scholar
  6. 6.
    Soille, P., Breen, E., Jones, R.: Recursive implementation of erosions and dilations along discrete lines at arbitrary angles. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(5), 562–567 (1996)CrossRefGoogle Scholar
  7. 7.
    Soille, P., Talbot, H.: Directional morphological filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1313–1329 (2001)CrossRefGoogle Scholar
  8. 8.
    Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms—Part II: Application to angiographic image processing. Pattern Recognition 40(2), 648–658 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., Germain, P.: 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Computerized Medical Imaging and Graphics 34(5), 377–387 (2010)CrossRefGoogle Scholar
  10. 10.
    Thackray, B.D., Nelson, A.C.: Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Transactions on Medical Imaging 12(3), 385–392 (1993)CrossRefGoogle Scholar
  11. 11.
    Tankyevych, O., Talbot, H., Dokladál, P., Passat, N.: Spatially variant morpho-Hessian filter: Efficient implementation and application. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 137–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Buckley, M., Talbot, H.: Flexible linear openings and closings. In: Proc. ISMM. CIV, vol. 18, pp. 109–118. Springer (2000)Google Scholar
  13. 13.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  14. 14.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology: Blood vessels segmentation and a generalization of constrained connectivity. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 390–401. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Morard, V., Decencière, E., Dokládal, P.: Efficient geodesic attribute thinnings based on the barycentric diameter. Journal of Mathematical Imaging and Vision 46(1), 128–142 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Caldairou, B., Naegel, B., Passat, N.: Segmentation of complex images based on component-trees: Methodological tools. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 171–180. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Perret, B., Cousty, J., Tankyevych, O., Talbot, H., Passat, N.: Directed connected operators: Asymmetric hierarchies for image filtering and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, doi:10.1109/TPAMI.2014.2366145Google Scholar
  19. 19.
    Dufour, A., Tankyevych, O., Naegel, B., Talbot, H., Ronse, C., Baruthio, J., Dokládal, P., Passat, N.: Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Medical Image Analysis 17(2), 147–164 (2013)CrossRefGoogle Scholar
  20. 20.
    Wilkinson, M.H.F.: Hyperconnectivity, attribute-space connectivity and path openings: Theoretical relationships. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 47–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Stawiaski, J.: Optimal path: Theory and models for vessel segmentation. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 417–428. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Vincent, L.: Minimal path algorithms for the robust detection of linear features in gray images. In: Proc. ISMM. CIV, vol. 12, pp. 331–338. Springer (1998)Google Scholar
  23. 23.
    Heijmans, H.J.A.M., Buckley, M., Talbot, H.: Path openings and closings. Journal of Mathematical Imaging and Vision 22(2-3), 107–119 (2005)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Luengo Hendriks, C.L.: Constrained and dimensionality-independent path openings. IEEE Transactions on Image Processing 19(6), 1587–1595 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image and Vision Computing 25(4), 416–425 (2007)CrossRefGoogle Scholar
  26. 26.
    Cokelaer, F., Talbot, H., Chanussot, J.: Efficient robust d-dimensional path operators. IEEE Journal of Selected Topics in Signal Processing 6(7), 830–839 (2012)CrossRefGoogle Scholar
  27. 27.
    Morard, V., Dokládal, P., Decencière, E.: Parsimonious path openings and closings. IEEE Transactions on Image Processing 23(4), 1543–1555 (2014)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Bismuth, V., Vaillant, R., Talbot, H., Najman, L.: Curvilinear structure enhancement with the polygonal path image – Application to guide-wire segmentation in X-Ray fluoroscopy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 9–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Valero, S., Chanussot, J., Benediktsson, J.A., Talbot, H., Waske, B.: Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images. Pattern Recognition Letters 31(10), 1120–1127 (2010)CrossRefGoogle Scholar
  30. 30.
    Rossant, F., Badellino, M., Chavillon, A., Bloch, I., Paques, M.: A morphological approach for vessel segmentation in eye fundus images, with quantitative evaluation. Journal of Medical Imaging and Health Informatics 1(1), 42–48 (2011)CrossRefGoogle Scholar
  31. 31.
    Sigurðsson, E.M., Valero, S., Benediktsson, J.A., Chanussot, J., Talbot, H., Stefánsson, E.: Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recognition Letters 47, 164–171 (2014)CrossRefGoogle Scholar
  32. 32.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  33. 33.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Transactions on Image Processing 2(2), 176–201 (1993)CrossRefGoogle Scholar
  34. 34.
    Hamarneh, G., Jassi, P.: Vascusynth: Simulating vascular trees for generating volumetric image data with ground truth segmentation and tree analysis. Computerized Medical Imaging and Graphics 34(8), 605–616 (2010)CrossRefGoogle Scholar
  35. 35.
    Passat, N., Naegel, B., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive segmentation based on component-trees. Pattern Recognition 44(10-11), 2539–2554 (2011)CrossRefzbMATHGoogle Scholar
  36. 36.
    Urbach, E.R., Pervukhina, M., Bischof, L.: Segmentation of cracks in shale rock. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 451–460. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Odyssée Merveille
    • 1
    • 2
  • Hugues Talbot
    • 1
  • Laurent Najman
    • 1
  • Nicolas Passat
    • 2
  1. 1.ESIEE-Paris, LIGM, CNRSUniversité Paris-EstParisFrance
  2. 2.CReSTICUniversité de Reims Champagne-ArdenneReimsFrance

Personalised recommendations