Advertisement

Evaluation of Morphological Hierarchies for Supervised Segmentation

  • Benjamin Perret
  • Jean Cousty
  • Jean Carlo Rivera Ura
  • Silvio Jamil F. Guimarães
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9082)

Abstract

We propose a quantitative evaluation of morphological hierarchies (quasi-flat zones, constraint connectivity, watersheds, observation scale) in a novel framework based on the marked segmentation problem. We created a set of automatically generated markers for the one object image datasets of Grabcut and Weizmann. In order to evaluate the hierarchies, we applied the same segmentation strategy by combining several parameters and markers. Our results, which shows important differences among the considered hierarchies, give clues to understand the behaviour of each method in order to choose the best one for a given application. The code and the marker datasets are available online.

Keywords

Hierarchy Supervised segmentation Morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. CGIP 10(3), 195–223 (1979)Google Scholar
  2. 2.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: ISMM, pp. 69–76 (1994)Google Scholar
  4. 4.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. PAMI 18(12), 1163–1173 (1996)CrossRefGoogle Scholar
  5. 5.
    Meyer, F.: The dynamics of minima and contours. In: ISMM, pp. 329–336 (1996)Google Scholar
  6. 6.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. PAMI 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  7. 7.
    Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 116–125. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  9. 9.
    Moschidis, E., Graham, J.: A systematic performance evaluation of interactive image segmentation methods based on simulated user interaction. In: IEEE ISBI, pp. 928–931 (2010)Google Scholar
  10. 10.
    McGuinness, K., O’Connor, N.E.: Toward automated evaluation of interactive segmentation. CVIU 115(6), 868–884 (2011)Google Scholar
  11. 11.
    Klava, B., Hirata, N.: A model for simulating user interaction in hierarchical segmentation. In: ICIP (2014)Google Scholar
  12. 12.
    Zhao, Y., Nie, X., Duan, Y., Huang, Y., Luo, S.: A benchmark for interactive image segmentation algorithms. In: IEEE Workshop on POV, pp. 33–38 (2011)Google Scholar
  13. 13.
    Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: IEEE CVPR (2007)Google Scholar
  15. 15.
    Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Najman, L., Cousty, J., Perret, B.: Playing with kruskal: Algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)CrossRefGoogle Scholar
  19. 19.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. TIP 9(4), 561–576 (2000)Google Scholar
  20. 20.
    Chaussard, J., Couprie, M., Talbot, H.: Robust skeletonization using the discrete lambda-medial axis. PRL 32(9), 1384–1394 (2011)CrossRefGoogle Scholar
  21. 21.
    Pont-Tuset, J., Marques, F.: Measures and meta-measures for the supervised evaluation of image segmentation. In: CVPR (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Benjamin Perret
    • 1
  • Jean Cousty
    • 1
  • Jean Carlo Rivera Ura
    • 1
  • Silvio Jamil F. Guimarães
    • 1
    • 2
  1. 1.LIGM, ESIEEUniversité Paris EstParisFrance
  2. 2.PUC Minas - ICEI - DCC - VIPLABBelo HorizonteBrazil

Personalised recommendations