Shape-Based Analysis on Component-Graphs for Multivalued Image Processing

  • Éloïse Grossiord
  • Benoît Naegel
  • Hugues Talbot
  • Nicolas Passat
  • Laurent Najman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9082)


The extension of mathematical morphology to multivalued images is an important issue. This is particularly true in the context of connected operators based on morphological hierarchies, which aim to provide efficient image filtering and segmentation tools in various application fields, e.g.(bio)medical imaging, remote sensing, or astronomy. In this article, we propose a preliminary study that describes how two notions recently introduced for connected filtering, namely component-graphs (that extend component-trees from a spectral point of view) and shaping (that extend component-trees from a conceptual point of view) can be associated for the effective processing of multivalued images. Structural, algorithmic and experimental developments are proposed. This study opens the way to new paradigms for connected filtering based on hierarchies.


Connected filtering morphological hierarchies component-graph component-tree shaping multivalued images medical imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing 4(8), 1153–1160 (1995)CrossRefGoogle Scholar
  2. 2.
    Salembier, P., Wilkinson, M.H.F.: Connected operators: A review of region-based morphological image processing techniques. IEEE Signal Processing Magazine 26(6), 136–157 (2009)CrossRefGoogle Scholar
  3. 3.
    Heijmans, H.J.A.M.: Theoretical aspects of gray-level morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 568–582 (1991)CrossRefGoogle Scholar
  4. 4.
    Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(12), 1163–1173 (1996)CrossRefGoogle Scholar
  6. 6.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Transactions on Image Processing 9(4), 561–576 (2000)CrossRefGoogle Scholar
  7. 7.
    Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  8. 8.
    Perret, B., Lefèvre, S., Collet, C., Slezak, É.: Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE Transactions on Image Processing 21(1), 14–27 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  10. 10.
    Monasse, P., Guichard, F.: Scale-space from a level lines tree. Journal of Visual Communication and Image Representation 11(2), 224–236 (2000)CrossRefGoogle Scholar
  11. 11.
    Carlinet, E., Géraud, T.: A morphological tree of shapes for color images. In: Proc. of the ICPR, pp. 1132–1137 (2014)Google Scholar
  12. 12.
    Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees. IEEE Transactions on Image Processing 23(12), 5152–5164 (2014)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Passat, N., Naegel, B.: Component-trees and multivalued images: Structural properties. Journal of Mathematical Imaging and Vision 49(1), 37–50 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)CrossRefGoogle Scholar
  15. 15.
    Naegel, B., Passat, N.: Colour image filtering with component-graphs. In: Proc. of the ICPR, pp. 1621–1626 (2014)Google Scholar
  16. 16.
    Naegel, B., Passat, N.: Toward connected filtering based on component-graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 353–364. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. In: Proc. of the ICPR, pp. 485–488 (2012)Google Scholar
  18. 18.
    Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology: Blood vessels segmentation and a generalization of constrained connectivity. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 390–401. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Grossiord, É., Talbot, H., Passat, N., Meignan, M., Tervé, P., Najman, L.: Hierarchies and shape-space for PET image segmentation. In: Proc. of the ISBI (to appear, 2015)Google Scholar
  20. 20.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  21. 21.
    Alajlan, N., Kamel, M.S., Freeman, G.H.: Geometry-based image retrieval in binary image databases. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(6), 1003–1013 (2008)CrossRefGoogle Scholar
  22. 22.
    Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 272–285 (2007)CrossRefGoogle Scholar
  23. 23.
    Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Transactions on Image Processing 16(12), 2943–2952 (2007)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Naegel, B., Wendling, L.: A document binarization method based on connected operators. Pattern Recognition Letters 31(11), 1251–1259 (2010)CrossRefGoogle Scholar
  25. 25.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  26. 26.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters on shared memory parallel machines. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1800–1813 (2008)CrossRefGoogle Scholar
  27. 27.
    Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Transactions on Image Processing 23(9), 3885–3895 (2014)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. International Journal of Computer Vision 68(3), 289–317 (2006)CrossRefGoogle Scholar
  29. 29.
    Passat, N., Naegel, B., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive segmentation based on component-trees. Pattern Recognition 44(10–11), 2539–2554 (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)CrossRefGoogle Scholar
  31. 31.
    Passat, N., Naegel, B.: Component-hypertrees for image segmentation. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 284–295. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Perret, B., Cousty, J., Tankyevych, O., Talbot, H., Passat, N.: Directed connected operators: Asymmetric hierarchies for image filtering and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, doi:10.1109/TPAMI.2014.2366145Google Scholar
  33. 33.
    Naegel, B., Passat, N.: Component-trees and multivalued images: A comparative study. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 261–271. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Passat, N., Naegel, B.: An extension of component-trees to partial orders. In: Proc. of the ICIP, pp. 3981–3984 (2009)Google Scholar
  35. 35.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Dufour, A., Tankyevych, O., Naegel, B., Talbot, H., Ronse, C., Baruthio, J., Dokládal, P., Passat, N.: Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Medical Image Analysis 17(2), 147–164 (2013)CrossRefGoogle Scholar
  37. 37.
    Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector attribute filters. In: Proc. of the ISMM. Computational Imaging and Vision, vol. 30, pp. 95–104. Springer (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Éloïse Grossiord
    • 1
    • 4
  • Benoît Naegel
    • 2
  • Hugues Talbot
    • 1
  • Nicolas Passat
    • 3
  • Laurent Najman
    • 1
  1. 1.ESIEE-Paris, LIGM, CNRSUniversité Paris-EstParisFrance
  2. 2.ICube, CNRSUniversité de StrasbourgStrasbourgFrance
  3. 3.CReSTICUniversité de Reims Champagne-ArdenneReimsFrance
  4. 4.KeoSysNantesFrance

Personalised recommendations