Advertisement

Abstract

Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are.

Keywords

Mathematical morphology Pseudo-morphology Weakly associative lattices Sponges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angulo, J.: Supremum/Infimum and Nonlinear Averaging of Positive Definite Symmetric Matrices. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 3–33. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Angulo, J., Lefèvre, S., Lezoray, O.: Color Representation and Processing in Polar Color Spaces. In: Fernandez-Maloigne, C., Robert-Inacio, F., Macaire, L. (eds.) Digital Color Imaging, chap. 1, pp. 1–40. John Wiley & Sons, Inc., Hoboken (2012)Google Scholar
  3. 3.
    Angulo, J., Velasco-Forero, S.: Complete Lattice Structure of Poincaré Upper-Half Plane and Mathematical Morphology for Hyperbolic-Valued Images. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 535–542. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Aptoula, E., Lefèvre, S.: On the morphological processing of hue. Image Vis. Comput. 27(9), 1394–1401 (2009)CrossRefGoogle Scholar
  5. 5.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  6. 6.
    Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for matrix data: Ordering versus PDE-based approach. Image Vis. Comput. 25(4), 496–511 (2007)CrossRefGoogle Scholar
  7. 7.
    Burgeth, B., Kleefeld, A.: Morphology for Color Images via Loewner Order for Matrix Fields. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 243–254. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Burgeth, B., Kleefeld, A.: An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recognit. Lett. 47, 29–39 (2014)CrossRefGoogle Scholar
  9. 9.
    Burgeth, B., Papenberg, N., Bruhn, A., Welk, M., Feddern, C., Weickert, J.: Morphology for Higher-Dimensional Tensor Data Via Loewner Ordering. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On, Computational Imaging and Vision, vol. 30, pp. 407–416. Springer, Netherlands (2005)CrossRefGoogle Scholar
  10. 10.
    Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Morphological Operations on Matrix-Valued Images. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 155–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Mathematical Morphology on Tensor Data Using the Loewner Ordering. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields. Math. Vis, pp. 357–368. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Chevallier, E., Angulo, J.: Optimized total order for mathematical morphology on metric spaces. Tech. rep., Centre de Morphologie Mathématique, MINES ParisTech (2014)Google Scholar
  13. 13.
    Fried, E.: Weakly associative lattices with join and meet of several elements. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 16, 93–98 (1973)MathSciNetGoogle Scholar
  14. 14.
    Fried, E., Grätzer, G.: A nonassociative extension of the class of distributive lattices. Pacific J. Math. 49(1), 59–78 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fried, E., Grätzer, G.: Some examples of weakly associative lattices. Colloq. Math. 27, 215–221 (1973)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Fried, E., Grätzer, G.: Partial and free weakly associative lattices. Houston J. Math. 2(4), 501–512 (1976)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Gomila, C., Meyer, F.: Levelings in vector spaces. In: Int. Conf. Image Proc., vol. 2, pp. 929–933. IEEE (1999)Google Scholar
  18. 18.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag (2003)Google Scholar
  19. 19.
    van de Gronde, J.J., Roerdink, J.B.T.M.: Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields. Pattern Recognit. Lett. 47, 40–49 (2014)CrossRefGoogle Scholar
  20. 20.
    van de Gronde, J.J., Roerdink, J.B.T.M.: Group-Invariant Colour Morphology Based on Frames. IEEE Trans. Image Process. 23(3), 1276–1288 (2014)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Hanbury, A.G., Serra, J.: Morphological operators on the unit circle. IEEE Trans. Image Process. 10(12), 1842–1850 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Heijmans, H.J.A.M.: Morphological image operators. Academic Press (1994)Google Scholar
  23. 23.
    Leutola, K., Nieminen, J.: Posets and generalized lattices. Algebra Universalis 16(1), 344–354 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pasternak, O., Sochen, N., Basser, P.J.: The effect of metric selection on the analysis of diffusion tensor MRI data. NeuroImage 49(3), 2190–2204 (2010)CrossRefGoogle Scholar
  25. 25.
    Peters, R.A.: Mathematical morphology for angle-valued images. Proceedings of the SPIE 3026, 84–94 (1997)CrossRefGoogle Scholar
  26. 26.
    Rachůnek, J.: Semi-ordered groups. Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika 18(1), 5–20 (1979)zbMATHGoogle Scholar
  27. 27.
    Serra, J.: Anamorphoses and function lattices. In: Dougherty, E.R., Gader, P.D., Serra, J.C. (eds.) Image Algebra and Morphological Image Processing IV, vol. 2030, pp. 2–11. SPIE Proceedings (1993)Google Scholar
  28. 28.
    Skala, H.L.: Trellis theory. Algebra Universalis 1(1), 218–233 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Tobar, M.C., Platero, C., González, P.M., Asensio, G.: Mathematical morphology in the HSI colour space. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 467–474. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Zanoguera, F., Meyer, F.: On the implementation of non-separable vector levelings. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology, p. 369. CSIRO Publishing (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jasper J. van de Gronde
    • 1
    Email author
  • Jos B. T. M. Roerdink
    • 1
  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningen AKThe Netherlands

Personalised recommendations