An Automated Assay for the Evaluation of Mortality in Fish Embryo

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9082)

Abstract

Fish embryo models are used increasingly for human disease modeling, chemical toxicology screening, drug discovery and environmental toxicology studies. These studies are devoted to the analysis of a wide spectrum of physiological parameters, such as mortality ratio. In this article, we develop an assay to determine Medaka (Oryzias latipes) embryo mortality. Based on video sequences, our purpose is to obtain reliable, repeatable results in a fully automated fashion. To reach that challenging goal, we develop an efficient morphological pipeline that analyses image sequences in a multiscale paradigm, from the global scene to the embryo, and then to its heart, finally analysing its putative motion, characterized by intensity variations. Our pipeline, based on robust morphological operators, has a low computational cost, and was experimentally assessed on a dataset consisting of 660 images, providing a success ratio higher than 99%.

Keywords

Toxicology Medaka Image stabilisation Change detection Connected filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oxendine, S.L., Cowden, J., Hinton, D.E., Padilla, S.: Adapting the medaka embryo assay to a high-throughput approach for developmental toxicity testing. NeuroToxicology 27(5), 840–845 (2006)CrossRefGoogle Scholar
  2. 2.
    Dial, N.A.: Methylmercury: Some effects on embryogenesis in the Japanese Medaka,Oryzias latipes. Teratology 17(1), 83–91 (1978)CrossRefGoogle Scholar
  3. 3.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: An open-source platform for biological-image analysis. Nature Methods 9(7), 676–682 (2012)CrossRefGoogle Scholar
  4. 4.
    Liu, T., Lu, J., Wang, Y., Campbell, W.A., Huang, L., Zhu, J., Xia, W., Wong, S.T.: Computerized image analysis for quantitative neuronal phenotyping in zebrafish. Journal of Neuroscience Methods 153(2), 190–202 (2006)CrossRefGoogle Scholar
  5. 5.
    Xia, S., Zhu, Y., Xu, X., Xia, W.: Computational techniques in zebrafish image processing and analysis. Journal of Neuroscience Methods 213(1), 6–13 (2013)CrossRefGoogle Scholar
  6. 6.
    Serra, J.: Image analysis and mathematical morphology. Academic Press (1982)Google Scholar
  7. 7.
    Soille, P.: Morphological Image Analysis, principles and applications. Springer (1999)Google Scholar
  8. 8.
    Najman, L., Talbot, H., (eds.): Mathematical Morphology: From theory to applications. ISTE-Wiley, London, UK (September 2010) ISBN 978-1848212152Google Scholar
  9. 9.
    Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: The scikit-image contributors: Scikit-image: Image processing in Python. Peer J 2(6), e453 (2014)Google Scholar
  10. 10.
    Couprie, M., Marak, L., Talbot, H.: The Pink Image Processing Library. Euroscipy, Paris (2011)Google Scholar
  11. 11.
    Heijmans, H.: Morphological image operators. Advances in Electronics and Electron Physics Series. Academic Press, Boston (1994)MATHGoogle Scholar
  12. 12.
    Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: Proceedings of the Conference on Mathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, pp. 22–27 (1993)Google Scholar
  13. 13.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  14. 14.
    Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)CrossRefGoogle Scholar
  15. 15.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  16. 16.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285-296), 23–27 (1975)Google Scholar
  17. 17.
    Jones, R., Soille, P.: Periodic lines: Definition, cascades, and application to granulometries. Pattern Recognition Letters 17(10), 1057–1063 (1996)CrossRefGoogle Scholar
  18. 18.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: IEE ICCV, vol. 2, pp. 1150–1157 (1999)Google Scholar
  19. 19.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Élodie Puybareau
    • 1
  • Marc Léonard
    • 2
  • Hugues Talbot
    • 1
  1. 1.Université Paris-Est / ESIEENoisy-le-Grand CedexFrance
  2. 2.L’Oréal Recherche et DéveloppementAulnay-sous-BoisFrance

Personalised recommendations