Designing a Report Recommendation Assistant: A First Design Cycle

  • Martin Kretzer
  • Maximilian Kleinedler
  • Christian Theilemann
  • Alexander Mädche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9073)


Employees often supplement their organization’s Business Intelligence (BI) system with individually tinkered reports. Unfortunately, these supplements bear numerous threats such as limited report reuse across all users of the BI system. Therefore, we established a design science research (DSR) project by exploring impediments of existing BI systems, building meta-requirements and suggesting design principles. In particular, we propose a Report Recommendation Assistant (RRA) for improving reuse of reports across potential users.

In this paper, we present our DSR project and focus on the first evaluation cycle. Our results indicate that the RRA has a positive impact on perceived ease of use and perceived usefulness of the BI system. Furthermore, we find that these effects are negatively moderated by user’s expertise in using the BI system and are not biased by the underlying BI system. Finally, we leverage results from BI expert interviews and existing literature to refine the proposed RRA.


Business intelligence Design science research Diffusion of reports Report reuse Recommendation assistant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maas, J.B., Fenema, P.C., Soeters, J.: Information System Infusion: The Role of Control and Empowerment. In: ICIS Proceedings (2012)Google Scholar
  2. 2.
    Györy, A., Cleven, A., Uebernickel, F., Brenner, W.: Exploring the Shadows: IT Governance Approaches to User-Driven Innovation. In: ECIS Proceedings (2012)Google Scholar
  3. 3.
    Baskerville, R.: Individual IS as a Research Arena. Europ. J. Inf. Sys. 20, 251–254 (2011)CrossRefGoogle Scholar
  4. 4.
    Behrens, S.: Shadow Systems: The Good, the Bad, the Ugly. Com. ACM 52, 124–129 (2009)CrossRefGoogle Scholar
  5. 5.
    Tilson, D., Lyytinen, K., Sørensen, C.: Digital Infrastructures: The missing IS Research Agenda. Information Systems Research 21(4), 748–759 (2010)CrossRefGoogle Scholar
  6. 6.
    Davenport, T.H.: Big Data@Work: Dispelling the Myths. Uncovering the Opportunities. HBS Publishing, Boston (2014)Google Scholar
  7. 7.
    Kretzer, M., Gaß, O., Mädche, A.: Design Principles for Diffusion of Reports and Innovative Use of Business Intelligence Platforms. In: WI Proceedings (2015)Google Scholar
  8. 8.
    Bernardes, E., Hanna, M.A.: Theoretical Review of Flexibility, Agility and Responsiveness in the Operations Management Literature. Int. J. Op. Prod. Mgmt. 29(1), 30–53 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, X., Hsieh, J.J.P.-A., Rai, A.: Motivational Differences Across Post-Acceptance Information Usage Behaviors: An Investigation in the Business Intelligence Systems Context. Information Systems Research 24(3), 659–682 (2013)CrossRefGoogle Scholar
  10. 10.
    Burton-Jones, A., Straub, D.W.: Reconceptualizing System Usage: An Approach and Empirical Test. Information Systems Research 17(3), 228–246 (2006)CrossRefGoogle Scholar
  11. 11.
    Farjoun, M.: Beyond Dualism: Stability and Change as a Duality. Academy of Management Review 35(2), 202–225 (2010)CrossRefGoogle Scholar
  12. 12.
    Zittrain, J.L.: The Future of the Internet and How to Stop It, New Haven (2008)Google Scholar
  13. 13.
    Rogers, E.: Diffusion of Innovations. Simon and Schuster, New York (2010)Google Scholar
  14. 14.
    Bhattacherjee, A.: Social Science Research: Principles, Methods, and Practices (2012)Google Scholar
  15. 15.
    Attewell, P.: Technology Diffusion and Organizational Learning. Org. Sc. 3(1), 1–19 (1992)CrossRefGoogle Scholar
  16. 16.
    Dinev, T., Hu, Q.: The Centrality of Awareness in the Formation of User Behavioral Intention toward Protective Information Technologies. J. AIS 8(7), 386–408 (2007)Google Scholar
  17. 17.
    Mustonen-Ollila, E., Lyytinen, K.: Why Organizations adopt IS Process Innovations: A Longitudinal Study using Diffusion of Innovation Theory. Inf. Sys. J. 13(3), 275–297 (2003)CrossRefGoogle Scholar
  18. 18.
    Siponen, M., Pahnila, S., Mahmood, M.: Compliance with Information Security Policies: An Empirical Investigation. IEEE Computer 43(2), 64–71 (2010)CrossRefGoogle Scholar
  19. 19.
    Gregor, S., Hevner, A.R.: Positioning and Presenting Design Science Research for Maximum Impact. MIS Quarterly 37(2), 337–355 (2013)Google Scholar
  20. 20.
    Kuechler, W., Vaishnavi, V.: A Framework for Theory Development in DSR: Multiple Perspectives. J. AIS 13(6), 395–423 (2012)Google Scholar
  21. 21.
    Gill, T.G.: Reflections on Reshaping the Rugged Fitness Landscape. Int. J. Emerging Transdiscipline, 165-196 (2008)Google Scholar
  22. 22.
    Carlsson, S.A.: DSR in IS: A Critical Realist Approach. In: Hevner, A., Chatterjee, S. (eds.) Design Research in IS, pp. 209–233. Springer (2010)Google Scholar
  23. 23.
    Goes, P.B.: Design Science Research in Top IS Journals. MIS Quarterly 38(1), ii-viii (2014)Google Scholar
  24. 24.
    Nunamaker, J., Derrick, D., Elkins, A., Burgoon, J., Patton, M.: Embodies Conversational Agent-Based Kiosk for Automated Interviewing. J. Mgmt. Inf. Sys. 28(1), 17–48 (2011)CrossRefGoogle Scholar
  25. 25.
    Hevner, A.R.: A Three Cycle View of DSR. Scand. J. Inf. Sys. 19(2), art. 4 (2007)Google Scholar
  26. 26.
    Day, J.M., Junglas, I., Silva, L.: Information Flow Impediments in Disaster Relief Supply Chain. J. AIS 10(8), 637–660 (2009)Google Scholar
  27. 27.
    Walls, J.G., Widmeyer, G.R., El Sawy, O.A.: Assessing IS Design Theory in Perspective. JITTA 6(2), 43–58 (2004)Google Scholar
  28. 28.
    Myers, D.M.: Qualitative Research in Business & Management. Sage Publications (2009)Google Scholar
  29. 29.
    Lapointe, L., Rivard, S.: A Triple Take on Information Systems Implementation. Organization Science 18(1), 89–107 (2007)CrossRefGoogle Scholar
  30. 30.
    Unger, C., Kemper, H.-G., Russland, A.: Business Intelligence Center Concepts. In: AMCIS Proceedings (2008)Google Scholar
  31. 31.
    Singh, P.V., Phelps, C.: Networks, Social Influence, and the Choice Among Competing Innovations. Information Systems Research 24(3), 539–560 (2013)CrossRefGoogle Scholar
  32. 32.
    Marsden, P., Friedkin, N.: Network Studies of Social Influence. Social Methods Research 22(1), 127–151 (1993)CrossRefGoogle Scholar
  33. 33.
    Angst, C., Agarwal, R., Sambamurthy, V., Kelly, K.: Social Contagion and Information Technology Diffusion. Management Science 56(8), 1219–1241 (2010)CrossRefGoogle Scholar
  34. 34.
    Fichman, R.G., Dos Santos, B.L., Zheng, Z.E.: Digital Innovation as a Fundamental and Powerful Concept in the IS Curriculm. MIS Quarterly 38(2), 329–354 (2014)Google Scholar
  35. 35.
    Silver, M.S.: Decisional Guidance for Computer-Based Decision Support. MIS Quarterly 15(1), 105–122 (1991)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Dhaliwal, J.S., Benbasat, I.: The Use and Effects of Knowledge-based System Explanations. Information Systems Research 7(3) (1996)Google Scholar
  37. 37.
    Limayem, M., DeSanctis, G.: Providing Decisional Guidance for Multicriteria Decision Making in Groups. Information Systems Research 11(4), 386–401 (2000)CrossRefGoogle Scholar
  38. 38.
    Zhang, T., Agarwal, R., Lucas, H.C.: The Value of IT-Enabled Retailer Learning. MIS Quarterly 35(4), 859–881 (2011)Google Scholar
  39. 39.
    SAP. SAP BusinessObject BI Clients (2013),
  40. 40.
    Brown, S.A., Venkatesh, V., Goyal, S.: Expectation Confirmation in Information Systems Research. MIS Quarterly 38(3), 729–756 (2014)Google Scholar
  41. 41.
    Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of IT. MIS Quarterly 13(3), 319–340 (1989)CrossRefGoogle Scholar
  42. 42.
    Microsoft: Contoso Retail Store Business Intelligence Dataset (January 01, 2015),
  43. 43.
    SAP: SAP BusinessObjects Analysis, edition for Microsoft Office (January 27, 2015),
  44. 44.
    Homburg, C.: Marketingmanagement, 5th edn. Springer, Gabler (2014)CrossRefGoogle Scholar
  45. 45.
    Bhattacherjee, A., Sanford, C.: Influence Processes for Information Technology Acceptance. MIS Quarterly 30(4), 805–825 (2006)Google Scholar
  46. 46.
    Silver, M.: Decisional Guidance: Broadening the Scope. Advances in Management Information Systems 6, 90–119 (2006)Google Scholar
  47. 47.
    Gregor, S., Benbasat, I.: Explanations from Intelligent Systems: Theoretical Foundations and Implications for Practice. MIS Quarterly 23(4), 497–530 (1999)CrossRefGoogle Scholar
  48. 48.
    Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience, New York, NY (1990)Google Scholar
  49. 49.
    Hamari, J., Koivisto, J.: Measuring Flow in Gamification: Dispositional Flow Scale-2. Computers in Human Behavior 40, 133–143 (2014)CrossRefGoogle Scholar
  50. 50.
    Procci, K., Singer, A.R., Levy, K.R., Bowers, C.: Measuring the Flow Experience of Gamers. Computers in Human Behavior 28(6), 2306–2312 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Kretzer
    • 1
  • Maximilian Kleinedler
    • 1
  • Christian Theilemann
    • 1
  • Alexander Mädche
    • 1
  1. 1.Institute for Enterprise SystemsUniversity of MannheimMannheimGermany

Personalised recommendations