A Hot Topic—Group Affect Live Biofeedback for Participation Platforms

  • Ewa LuxEmail author
  • Florian Hawlitschek
  • Timm Teubner
  • Claudia Niemeyer
  • Marc T.P. Adam
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 10)


Emotions are omnipresent in our lives. They influence our health, decision making, and social interactions—bilateral as well as multilateral. Hence also modern forms of opinion building and exchange, e.g., on e-participation platforms, should consider the effects of emotions on individual and group level. Previous research on group interactions demonstrated that providing the members with information about the affective state of the entire group, reciprocally influences the affective states of the individuals and can even increase group performance. Hence, in the current short paper we propose group affect live biofeedback (LBF) as a beneficial feature for e-participation platforms. We want to examine how group affect LBF based on the participant’s heart rate impacts participation behavior.


Group affect Live biofeedback Participation Emotion 


  1. 1.
    Agrawal, A.K., Catalini, C., Goldfarb, A.: Some simple economics of crowdfunding. In: Lerner, J., Stern, S. (eds.) Innovation Policy and the Economy, pp. 63–97. University of Chicago Press, Chicago (2013)Google Scholar
  2. 2.
    Cabannes, Y.: Participatory budgeting: a significant contribution to participatory democracy. Env. Urban. 16, 27–46 (2004)Google Scholar
  3. 3.
    Send, H., Schildhauer, T.: Partizipationsstudie 2014: Online Mitmachen und Entscheiden. Berlin (2014)Google Scholar
  4. 4.
    Newton, K.: Trust and political disenchantment. In: Eder, C., Mochmann, I.C., Quandt, M. (eds.) Political Trust and Disenchantment with Politics: International Perspectives, pp. 19–30. Brill Academic Pub, Leiden (2014)Google Scholar
  5. 5.
    Parycek, P., Schöllhammer, R., Schossböck, J.: Emotions and E-participation of young people: a preliminary study. In: 48th Hawaii International Conference on System Science, pp. 2415–2424. AIS (2015)Google Scholar
  6. 6.
    Schaaff, K., Adam, M.T.P.: Measuring emotional arousal for online applications: evaluation of ultra-short term heart rate variability measures. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 362–368. IEEE (2013)Google Scholar
  7. 7.
    Barsade, S.G., Knight, A.P.: Group affect. Ann. Rev. Organ. Psychol. Organ. Behav. 2, 1–26 (2014)Google Scholar
  8. 8.
    Astor, P.J., Adam, M.T.P., Jerčić, P., Schaaff, K., Weinhardt, C.: Integrating biosignals into information systems: a NeuroIS tool for improving emotion regulation. J. Manag. Inf. Syst. 30, 247–278 (2013)CrossRefGoogle Scholar
  9. 9.
    Barsade, S.G., Gibson, D.E.: Group emotion: a view from top and bottom. Res. Manag. Groups Teams 1, 81–102 (1998)Google Scholar
  10. 10.
    Kelly, J.R., Barsade, S.G.: Mood and emotions in small groups and work teams. Organ. Behav. Hum. Decis. Process. 86, 99–130 (2001)CrossRefGoogle Scholar
  11. 11.
    Al Osman, H., Eid, M., Saddik., A.: U-Biofeedback: a multimedia-based reference model for ubiquitous biofeedback systems. Multimedia Tools Appl. 72, 3143–3168 (2013)Google Scholar
  12. 12.
    Knight, A.P.: Mood at the midpoint: affect and change in exploratory search over time in teams that face a deadline. Organ. Sci. 26, 1–20 (2013)Google Scholar
  13. 13.
    Walter, F., Bruch, H.: The positive group affect spiral: a dynamic model of the emergence of positive affective similarity in work groups. J. Organ. Behav. 29, 239–261 (2008)CrossRefGoogle Scholar
  14. 14.
    Krahmer, E., Swerts, M.: Audiovisual expression of emotions in communication. In: Westerink, J., Krans, M., Ouwerkerk, M. (eds.) Sensing Emotions: The Impact of Context on Experience Measurements, pp. 85–106. Springer, Eindhoven (2011)Google Scholar
  15. 15.
    Picard, R., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1175–1191 (2001)CrossRefGoogle Scholar
  16. 16.
    Dimoka, A., Pavlou, P.A., Davis, F.D.: Research commentary-NeuroIS: the potential of cognitive neuroscience for information systems research. Inf. Syst. Res. 22, 687–702 (2011)CrossRefGoogle Scholar
  17. 17.
    Dimoka, A., Banker, R., Benbasat, I., Davis, F., Dennis, A., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P., Pavlou, P., Müller-Putz, G., Riedl, R., Brocke, J. vom, Weber, B.: On the use of neurophysiological tools in IS research: developing a research agenda for NeuroIS. MIS Q. 36, 679–702 (2012)Google Scholar
  18. 18.
    Vom Brocke, J., Riedl, R., Léger, P.-M.: Application strategies for neuroscience in information systems design science research. J. Comput. Inf. Syst. 53, 1–13 (2012)Google Scholar
  19. 19.
    Riedl, R., Davis, F., Hevner, A.: Towards a NeuroIS research methodology: intensifying the discussion on methods, tools, and measurement. J. Assoc. Inf. Syst. 15, i–xxxv (2014)Google Scholar
  20. 20.
    Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31, 1–8 (2012)CrossRefGoogle Scholar
  21. 21.
    Hearn, T.: Webcam Pulse Detector.
  22. 22.
    Mandryk, R.L., Dielschneider, S., Kalyn, M.R., Bertram, C.P., Gaetz, M., Doucette, A., Taylor, B.A., Orr, A.P., Keiver, K.: Games as neurofeedback training for children with FASD. In: Proceedings of the 12th International Conference on Interaction Design and Children, pp. 165–172. ACM, New York (2013)Google Scholar
  23. 23.
    Ouwerkerk, M., Dandine, P., Bilio, D., Kocielnik, R., Mercurio, J., Huijgen, H., Westerink, J.H.D.M.: Wireless multi sensor bracelet with discreet feedback. In: Proceedings of the 4th Conference on Wireless Health, Article No. 6. ACM, Baltimore (2013)Google Scholar
  24. 24.
    Djajadiningrat, T., Geurts, L., Munniksma, P.R., Christiaansen, G., Bont, J. de: Rationalizer: an emotion mirror for online traders. In: Proceedings of the 5th International Workshop on Design and Semantics of Form and Movement, pp. 39–48 (2009)Google Scholar
  25. 25.
    Dholakia, R.R., Zhao, M., Dholakia, N., Fortin, D.R.: Interactivity and revisits to websites: a theoretical framework, vol. 17, pp. 108–115. RITIM Working Papers, Kingston (2000)Google Scholar
  26. 26.
    Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24–54 (2010)CrossRefGoogle Scholar
  27. 27.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 91–231 (2008)CrossRefGoogle Scholar
  28. 28.
    Hess, T., Fuller, M., Campbell, D.: Designing interfaces with social presence: using vividness and extraversion to create social recommendation agents. J. Assoc. Inf. Syst. 10, 889–919 (2009)Google Scholar
  29. 29.
    Kumar, N., Benbasat, I.: The Influence of recommendations and consumer reviews on evaluations of websites. Inf. Syst. Res. 17, 425–439 (2006)CrossRefGoogle Scholar
  30. 30.
    Hassanein, K., Head, M.: Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. Int. J. Hum. Comput. Stud. 65, 689–708 (2007)CrossRefGoogle Scholar
  31. 31.
    Fenton O’Creevy, M., Soane, E., Nicholson, N., Willman, P.: Thinking, feeling and deciding: the influence of emotions on the decision making and performance of traders. J. Organ. Behav. 32, 1044–1061 (2011)Google Scholar
  32. 32.
    Salovey, P., Mayer, J.: Emotional intelligence. Imagination Cogn. Pers. 9, 185–211 (1989)CrossRefGoogle Scholar
  33. 33.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340 (1989)CrossRefGoogle Scholar
  34. 34.
    Venkatesh, V., Davis, F.D., College, S.M.W.: Theoretical acceptance extension model: field four studies of the technology longitudinal. Manage. Sci. 46, 186–204 (2000)CrossRefGoogle Scholar
  35. 35.
    Fitbit: Fitbit Official Site for Activity Trackers and More.
  36. 36.
  37. 37.
  38. 38.
  39. 39.
    Poh, M.-Z., Swenson, N., Picard, R.W.: A wearable sensor for unobtrusive, long-term assesment of electrodermal activity. IEEE Trans. Biomed. Eng. 57, 1243–1252 (2010)CrossRefGoogle Scholar
  40. 40.
    Schaaff, K., Degen, R., Adler, N., Adam, M.T.P.: Measuring affect using a standard mouse device. Biomed. Eng. 57, 761–764 (2012)CrossRefGoogle Scholar
  41. 41.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion. In: Proceedings of LREC 2010, pp. 1320–1326. ELRA, Valletta (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ewa Lux
    • 1
    Email author
  • Florian Hawlitschek
    • 1
  • Timm Teubner
    • 1
  • Claudia Niemeyer
    • 1
  • Marc T.P. Adam
    • 2
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.University of NewcastleNewcastleAustralia

Personalised recommendations