Cognitive Differences and Their Impact on Information Perception: An Empirical Study Combining Survey and Eye Tracking Data

  • Lisa Falschlunger
  • Horst Treiblmaier
  • Othmar Lehner
  • Elisabeth Grabmann
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 10)


Research shows that the quality of managerial decision making is dependent on both the availability and the interpretation of information. Visualizations are widely used to transform raw data into a more understandable format and to compress the constantly growing amount of information being produced. However, research in this area is highly fragmented and results are contradicting. A possible explanation for inconsistent results is the neglect of individual characteristics such as experience, working memory capacity, or cultural background. We propose a preliminary model based on an extensive literature review on cognition theory that sheds light on potential individual antecedents of information processing efficiency. Our preliminary results based on eye tracking, automated span tasks, as well as survey data show that domain expertise, spatial ability and long term orientation exert a significant influence on this cognitive construct.


Information visualization Information perception Cognitive fit Decision making Information processing efficiency 


  1. 1.
    Dilla, W., Janvrin, D.J., Raschke, R.: Interactive data visualization: new directions for accounting information systems research. J. Inf. Syst. 24(2), 1–37 (2010)Google Scholar
  2. 2.
    Edmunds, A., Morris, A.: The problem of information overload in business organizations: a review of the literature. Int. J. Inf. Manage. 20(1), 17–28 (2000)CrossRefGoogle Scholar
  3. 3.
    Eppler, M.J., Mengis, J.: The concept of information overload: a review of literature from organization science, accounting, marketing, MIS, and related disciplines. Inf. Soc. 20, 35–344 (2004)CrossRefGoogle Scholar
  4. 4.
    Lurie, N.H., Mason, C.H.: Visual representation: implications for decision making. J. Mark. 71(1), 160–177 (2007)CrossRefGoogle Scholar
  5. 5.
    Tortosa-Edo, V., López-Navarro, M.A., Llorens-Monzonís, J., Rodríguez-Artola, R.M.: The antecendent role of personal environment values in the relationships among trust in companies, information processing and risk perception. J. Risk Res. 17(8), 1019–1035 (2014)CrossRefGoogle Scholar
  6. 6.
    Al-Kassab, J., Ouertani, Z.M., Schiuma, G., Neely, A.: Information visualization to support management decisions. Int. J. Inf. Technol. Decis. Making 13(2), 407–428 (2014)CrossRefGoogle Scholar
  7. 7.
    Parsons, P., Sedig, K.: Adjustable properties of visual representations: improving the quality of human-information interaction. J. Assoc. Inf. Sci. Technol. 65(3), 455–482 (2014)CrossRefGoogle Scholar
  8. 8.
    Conati, C., Maclaren, H.: Exploring the role of individual differences in information visualization. In: Proceedings of AVI 2008, pp. 199–206. ACM (2008)Google Scholar
  9. 9.
    Barat, A.H.: Human perception and knowledge organization: visual imagery. Libr. Hi Tech. 25(3), 338–351 (2007)CrossRefGoogle Scholar
  10. 10.
    Galletta, D., Vessey, I.: Cognitive fit: an empirical study of information acquisition. Inf. Syst. Res. 2(1), 63–84 (1991)CrossRefGoogle Scholar
  11. 11.
    Porat, T., Oron-Gilad, T., Meyer, J.: Task-dependent processing of tables and graphs. Behav. Inf. Technol. 28(3), 293–307 (2009)CrossRefGoogle Scholar
  12. 12.
    So, S., Smith, M.: Multivariate decision accuracy and the presentation of accounting information. Acc. Forum 28(3), 283–305 (2004)CrossRefGoogle Scholar
  13. 13.
    Dilla, W.N., Janvrin, D.J.: Voluntary disclosure in annual reports: the association between magnitude and direction of change in corporate financial performance and graph use. Acc. Horiz. 24(2), 257–278 (2010)CrossRefGoogle Scholar
  14. 14.
    Parush, A., Hod, A., Shtub, A.: Impact of visualization type and contextual factors on performance with enterprise resource planning systems. Comput. Ind. Eng. 52(1), 133–142 (2007)CrossRefGoogle Scholar
  15. 15.
    Peck, E.M., Yuksel, B.R., Harrison, L., Ottley, A., Remco, C.: Position paper: towards a 3-dimensional model of individual cognitive differences. In: Proceedings of BELIV 2012, pp. 1–6. ACM (2012)Google Scholar
  16. 16.
    Yigitbasioglu, O.M., Valcu, O.: A review of dashboards in performance management: implications for design and research. Int. J. Acc. Inf. Syst. 13(1), 41–59 (2012)CrossRefGoogle Scholar
  17. 17.
    Ziemkiewicz, C., Kosara, R.: Beyond bertin: seeing the forest despite the trees. IEEE Comput. Graph. Appl. 30(5), 7–11 (2010)CrossRefGoogle Scholar
  18. 18.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  19. 19.
    Lord, R.G., Maher, K.J.: Alternative information-processing models and their implications for theory, research, and practice. Acad. Manage. Rev. 15(1), 9–28 (1990)Google Scholar
  20. 20.
    Anderson, E.W., Potter, K.C., Matzen, L.E., Shepherd, J.F., Preston, G.A., Silva, C.T.: A user study of visualization effectiveness using EEG and cognitive load. In: Eurographics/IEEE Symposium on Visualization 2011 vol. 30, issue 3, pp. 791–800 (2011)Google Scholar
  21. 21.
    Mostyn, G.R.: Cognitive load theory: what it is, why it’s important for accounting construction and research. Issues Acc. Educ. 27(1), 227–245 (2012)CrossRefGoogle Scholar
  22. 22.
    Vessey, I.: Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decis. Sci. 22(2), 219–240 (1991)CrossRefGoogle Scholar
  23. 23.
    Hill, W.Y., Milner, M.M.: Guidelines for graphical displays in financial reporting. Acc. Educ. 12(2), 135–157 (2003)CrossRefGoogle Scholar
  24. 24.
    Kuang, X., Zhang, H., Zhao, S., McGuffin, M.J.: Tracing tuples across dimensions: a ccomparison of scatterplots and parallel coordinate plots. Comput. Graph. Forum 31(3), 1365–1374 (2012)CrossRefGoogle Scholar
  25. 25.
    Speier, C., Vessey, I., Valacich, J.S.: The effects of interruptions, task complexity, and computer-supported decision-making performance. Decis. Sci. 34(4), 771–797 (2003)CrossRefGoogle Scholar
  26. 26.
    Hard, N.J., Vanecek, M.T.: The implications of task and format on the use of financial information. J. Inf. Syst. 5(2), 35–49 (1991)Google Scholar
  27. 27.
    Wood, R.E.: Task complexity: definition of the construct. Organ. Behav. Hum. Decis. Process. 37, 60–82 (1986)CrossRefGoogle Scholar
  28. 28.
    Speier, C.: The influence of information presentation formats on complex task decision-making performance. Int. J. Hum. Comput. Stud. 64(11), 1115–1131 (2006)CrossRefGoogle Scholar
  29. 29.
    Gelman, A., Unwin, A.: InfoVis and statistical graphics: different goals, different looks. J. Comput. Graph. Stat. 22(1), 2–28 (2013)CrossRefGoogle Scholar
  30. 30.
    Hahn, U.: Experiential limitation in judgment and decision. Top. Cogn. Sci. 6(2), 229–244 (2014)CrossRefGoogle Scholar
  31. 31.
    Kook, N., Parente, R., Verville, J.: Can hofstede’s model explain national differences in perceived information overload? a look at data from the US and New Zealand. IEEE Trans. Prof. Commun. 51(1), 33–49 (2008)CrossRefGoogle Scholar
  32. 32.
    Goldberg, J., Helfman, J.: Eye tracking on visualizations: progressive extraction of scanning strategies. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 337–372. Springer (2014)Google Scholar
  33. 33.
    Renshaw, J.A., Finlay, J.E., Tyfa, D., Ward, R.D.: Designing for visual influence: an eye tracking study of the usability of graphical management information. In: Proceedings of Interact 2003, pp. 144–151. ACM (2003)Google Scholar
  34. 34.
    Redick, T.S., Broadway, J.M., Meier, M.E., Kuriakose, N.U., Kane, M.J., Engle, R.W.: Measuring working memory capacity with automated complex span tasks. Eur. J. Psychol. Assess. 28(3), 164–171 (2012)CrossRefGoogle Scholar
  35. 35.
    Hofstede, G.: Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations Across Nations, 2nd edn. Sage Publications (2001)Google Scholar
  36. 36.
    Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M.: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publishing (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lisa Falschlunger
    • 1
  • Horst Treiblmaier
    • 1
  • Othmar Lehner
    • 2
  • Elisabeth Grabmann
    • 1
  1. 1.University of Applied Sciences Upper AustriaWelsAustria
  2. 2.Said Business SchoolUniversity of OxfordOxfordUK

Personalised recommendations