Investigation of the Relationship Between Visual Website Complexity and Users’ Mental Workload: A NeuroIS Perspective

  • Ricardo Buettner
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 10)


We report promising research-in-progress results from an ongoing experiment on the relationship between visual website complexity and users’ mental workload. Applying pupillary based workload assessment as a NeuroIS methodology we found indications that navigation complexity, i.e., the number of (sub)menus, is more problematic than information complexity.


NeuroIS Eye-tracking Mental workload Pupillary diameter IS complexity Website complexity Navigation complexity Information complexity 


  1. 1.
    Wang, Q., Yang, S., Liu, M., Cao, Z., Ma, Q.: An eye-tracking study of website complexity from cognitive load perspective. Decis. Support Syst. 62, 1–10 (2014)CrossRefGoogle Scholar
  2. 2.
    Huang, M.H.: Designing website attributes to induce experiential encounters. Comput. Hum. Behav. 19(4), 425–442 (2003)CrossRefGoogle Scholar
  3. 3.
    Stassen, H.G., Johannsen, G., Moray, N.: Internal representation, internal model, human performance model and mental workload. Automatica 26(4), 811–820 (1990)CrossRefGoogle Scholar
  4. 4.
    Johannsen, G., Levis, A.H., Stassen, H.G.: Theoretical problems in man-machine systems and their experimental validation. Automatica 30(2), 217–231 (1992)CrossRefGoogle Scholar
  5. 5.
    Buettner, R.: Analyzing mental workload states on the basis of the pupillary hippus. In: Proceedings of NeuroIS 2014, p. 52 (2014)Google Scholar
  6. 6.
    Buettner, R., Sauer, S., Maier, C., Eckhardt, A.: Towards ex ante prediction of user performance: a novel NeuroIS methodology based on real-time measurement of mental effort. In: Proceedings of HICSS-48, pp. 533–542. IEEE (2015)Google Scholar
  7. 7.
    De Guinea, A.O., Titah, R., Léger, P.M.: Explicit and implicit antecedents of users’ behavioral beliefs in information systems: a neuropsychological investigation. J. Manage. Inf. Syst. 30(4), 179–210 (2014)CrossRefGoogle Scholar
  8. 8.
    Dimoka, A., Pavlou, P.A., Davis, F.D.: NeuroIS: the potential of cognitive neuroscience for information systems research. Inf. Syst. Res. 22(4), 687–702 (2011)CrossRefGoogle Scholar
  9. 9.
    Dimoka, A., Banker, R.D., Benbasat, I., Davis, F.D., Dennis, A.R., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P.H., Pavlou, P.A., Müller-Putz, G., Riedl, R., vom Brocke, J., Weber, B.: On the use of neurophysiological tools in IS research: developing a research agenda for NeuroIS. MISQ. 36(3), 679–A19 (2012)Google Scholar
  10. 10.
    Riedl, R., Banker, R.D., Benbasat, I., Davis, F.D., Dennis, A.R., Dimoka, A., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P., Müller-Putz, G., Pavlou, P.A., Straub, D.W., vom Brocke, J., Weber, B.: On the foundations of NeuroIS: reflections on the Gmunden retreat 2009. Commun. Assoc. Inf. Syst. 27, 243–264 (2010)Google Scholar
  11. 11.
    Iqbal, S.T., Adamczyk, P.D., Zheng, X.S., Bailey, B.P.: Towards an index of opportunity: understanding changes in mental workload during task execution. In: Proceedings of CHI 2005, pp. 311–320 (2005)Google Scholar
  12. 12.
    Bailey, B.P., Iqbal, S.T.: Understanding changes in mental workload during execution of goal-directed tasks and its application for interruption management. ACM Trans. Comput. Hum. Interact. 14(4), Article 21 (2008)Google Scholar
  13. 13.
    Buettner, R.: Cognitive workload of humans using artificial intelligence systems: towards objective measurement applying eye-tracking technology. In: KI 2013: Advances in Artificial Intelligence—LNCS 8077, pp. 37–48. Springer, Berlin, Heidelberg (2013)Google Scholar
  14. 14.
    Buettner, R., Daxenberger, B., Eckhardt, A., Maier, C.: Cognitive workload induced by information systems: introducing an objective way of measuring based on pupillary diameter responses. In: Proceedings of Pre-ICIS HCI/MIS, Paper 20 (2013)Google Scholar
  15. 15.
    Vom Brocke, J., Liang, T.P.: Guidelines for neuroscience studies in information systems research. J. Manage. Inf. Syst. 30(4), 211–234 (2014)Google Scholar
  16. 16.
    Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of ECIS 2009, pp. 2206–2217. AIS (2009)Google Scholar
  17. 17.
    Goldinger, S.D., Papesh, M.H.: Pupil dilation reflects the creation and retrieval of memories. Curr. Dir. Psychol. Sci. 21(2), 90–95 (2012)CrossRefGoogle Scholar
  18. 18.
    Laeng, B., Sirois, S., Gredebäck, G.: Pupillometry: a window to the preconscious? Perspect. Psychol. Sci. 7(1), 18–27 (2012)CrossRefGoogle Scholar
  19. 19.
    Duchowski, A.T.: Eye Tracking Methodology: Theory and Practice, 2nd edn. Springer, London, UK (2007)Google Scholar
  20. 20.
    Deng, L., Poole, M.S.: Affect in web interfaces: a study of the impacts of web page visual complexity and order. MISQ. 34(4), 711–A10 (2010)Google Scholar
  21. 21.
    Nadkarni, S., Gupta, R.: A task-based model of perceived website complexity. MISQ. 31(3), 501–524 (2007)Google Scholar
  22. 22.
    Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum, Hillsdale (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.FOM University of Applied Sciences, MIS-InstituteMunichGermany

Personalised recommendations