On the Properties of Vectorial Functions with Plateaued Components and Their Consequences on APN Functions

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9084)


[This is an extended abstract of paper [15], which has been submitted to a journal] Boolean plateaued functions and vectorial functions with plateaued components, that we simply call plateaued, play a significant role in cryptography, but little is known on them. We give here, without proofs, new characterizations of plateaued Boolean and vectorial functions, by means of the value distributions of derivatives and of power moments of the Walsh transform. This allows us to derive several characterizations of APN functions in this framework, showing that all the main results known for quadratic APN functions extend to plateaued functions. Moreover, we prove that the APN-ness of those plateaued vectorial functions whose component functions are unbalanced depends only on their value distribution. This proves that any plateaued (n,n)-function, n even, having same value distribution as APN power functions, is APN and has same extended Walsh spectrum as the APN Gold functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, T., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear functions. IEEE Trans. Inform. Theory 52(9), 4160–4170 (2006)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Budaghyan, L.: Construction and Analysis of Cryptographic Functions. Springer, (200 pages) (to appear)Google Scholar
  4. 4.
    Budaghyan, L., Carlet, C.: Classes of Quadratic APN Trinomials and Hexanomials and Related Structures. IEEE Trans. Inform. Theory 54(5), 2354–2357 (2008)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Budaghyan, L., Carlet, C.: CCZ-equivalence of Bent Vectorial Functions and Related Constructions. Designs, Codes and Cryptography 59(1-3), 69–87 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An infinite class of quadratic APN functions which are not equivalent to power functions. In: Proceedings of IEEE International Symposium on Information Theory (ISIT) (2006)Google Scholar
  7. 7.
    Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory 54(9), 4218–4229 (2008), This paper is a completed and merged version of [6] and [8]Google Scholar
  8. 8.
    Budaghyan, L., Carlet, C., Leander, G.: Another class of quadratic APN binomials over \(\mathbb{F}_{2^n}\): the case n divisible by 4. In: Proceedings of the Workshop on Coding and Cryptography, WCC 2007, pp. 49–58 (2007)Google Scholar
  9. 9.
    Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from known ones. Finite Fields and Applications 15(2), 150–159 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost Perfect Nonlinear Polynomials. In: Proceedings of the Workshop on Coding and Cryptography 2005, Bergen, pp. 306–315 (2005)Google Scholar
  11. 11.
    Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost Perfect Nonlinear Functions. IEEE Trans. Inform. Theory 52(3), 1141–1152 (2006), This is a completed version of [10]Google Scholar
  12. 12.
    Carlet, C.: A transformation on Boolean functions, its consequences on some problems related to Reed-Muller codes. In: Charpin, P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 42–50. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. Chapter of the monography. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press (2010), Preliminary version available at http://www.math.univ-paris13.fr/~carlet/pubs.html
  14. 14.
    Carlet, C.: Vectorial Boolean Functions for Cryptography. Chapter of the monography. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge University Press, Preliminary version available at http://www.math.univ-paris13.fr/~carlet/pubs.html
  15. 15.
    Carlet, C.: Boolean and vectorial plateaued functions and APN functions. PreprintGoogle Scholar
  16. 16.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2), 125–156 (1998)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Carlet, C., Prouff, E.: On plateaued functions and their constructions. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 54–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Carlet, C., Gong, G., Tan, Y.: Quadratic Zero-Difference Balanced Functions, APN functions and Strongly Regular Graphs. To appear in Designs, Codes and CryptographyGoogle Scholar
  19. 19.
    Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  20. 20.
    Ding, C., Tan, Y.: Zero-Difference Balanced Functions With Applications. Journal of Statistical Theory and Practice 6(1), 3–19 (2012)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Knudsen, L.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  22. 22.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceedings of the Symposium on Communication, Coding and Cryptography (1994), in Honor of J. L. massey on the occasion of his 60’th birthdayGoogle Scholar
  23. 23.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  24. 24.
    Mesnager, S.: Characterizations of plateaued and bent functions in characteristic p. In: Schmidt, K.-U., Winterhof, A. (eds.) SETA 2014. LNCS, vol. 8865, pp. 71–81. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  26. 26.
    Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  27. 27.
    Yu, Y., Wang, M., Li, Y.: A matrix approach for constructing quadratic APN functions. In: Proceedings of International Workshop on Coding and Cryptography, pp. 39–47 (2013)Google Scholar
  28. 28.
    Weng, G., Tan, Y., Gong, G.: On almost perfect nonlinear functions and their related algebraic objects. In: Proceedings of International Workshop on Coding and Cryptography, pp. 48–57 (2013)Google Scholar
  29. 29.
    Zheng, Y., Zhang, X.-M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LAGA, UMR 7539, CNRS, Universities of Paris 8 and Paris 13, Department of MathematicsUniversity of Paris 8Saint-Denis cedex 02France

Personalised recommendations