Blank Digital Signatures: Optimization and Practical Experiences

  • David Derler
  • Christian Hanser
  • Daniel Slamanig
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 457)


Blank Digital Signatures (\(\mathsf{BDS}\)) [18] enable an originator to delegate the signing rights for a template, containing fixed and exchangeable elements, to a proxy. The proxy is then able to choose one of the predefined values for each exchangeable element and issue a signature for such an instantiation of the template on behalf of the originator. In this paper, we propose optimizations for the \(\mathsf{BDS}\) scheme from [18] and present a library, integrating this optimized version within the Java Cryptography Architecture and the keying material into X.509 certificates. To illustrate the flexibility of the proposed library, we introduce two proof-of-concept implementations building up on XML and PDF, respectively. Finally, we give a detailed insight in the performance of the protocol and our implementation.


  1. 1.
    FutureID project.
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management - part 1: general (Revision 3). In: NIST. Special Publication (2012)Google Scholar
  4. 4.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  6. 6.
    Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M., Katzenbeisser, S., Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings - the role of \(\psi \) revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC 5280 (Proposed Standard), May 2008Google Scholar
  9. 9.
    Derler, D.: On the optimization of two recent proxy-type digital signature schemes and their efficient implementation in java. Master’s thesis, Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology (2013)Google Scholar
  10. 10.
    Derler, D., Hanser, C., Slamanig, D.: Privacy-enhancing proxy signatures from non-interactive anonymous credentials. In: Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 49–65. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. 11.
    Eastlake, D., Reagle, J., Solo, D.: XML-signature syntax and processing. W3C Recommendation (2002)Google Scholar
  12. 12.
    European Telecomunications Standards Institute: Electronic Signatures and Infrastructures (ESI); XML Advanced Electronic Signatures (XAdES); ETSI TS 101 903 (2010)Google Scholar
  13. 13.
    Fialli, J., Vajjhala, S.: Java Architecture for XML Binding (JAXB) 2.0: Java Specification Request (JSR) 222, October 2005Google Scholar
  14. 14.
    Gallagher, P., Foreword, D.D., Director, C.F.: FIPS PUB 186–3 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION Digital Signature Standard (DSS) (2009)Google Scholar
  15. 15.
    Geovandro, C.C.F.P., Barreto, P.S.L.M.: bnpairings - a java implementation of efficient bilinear pairings and elliptic curve operations, 5 November 2012. Public Google code project at:
  16. 16.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hanser, C.: IAIK ECCelerate SDK 2.51 (2014)Google Scholar
  18. 18.
    Hanser, C., Slamanig, D.: Blank digital signatures. In: 8th ACM SIGSAC Symposium on Information, Computer and Communications Security (AsiaCCS). Full Version: Cryptology ePrint Archive, Report 2013/130, pp. 95–106. ACM (2013)Google Scholar
  19. 19.
    Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  20. 20.
    International Telecommunication Union: Information Technology – Abstract Syntax Notation One (ASN.1): Specification of Basic Notation. ITU-T Recommendation X.680, July 2002Google Scholar
  21. 21.
    International Telecommunication Union: Information Technology – ASN.1 Encoding Rules – Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER). ITU-T Recommendation X.690, July 2002Google Scholar
  22. 22.
    Information Technology - Security Techniques - Encryption Algorithms - Part 2: Asymmetric Ciphers (2006)Google Scholar
  23. 23.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, p. 244. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  24. 24.
    Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  25. 25.
    Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.: Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans. 88–A(1), 239–246 (2005)CrossRefGoogle Scholar
  26. 26.
    Oracle: Java™ Cryptography Architecture (JCA) Reference Guide.
  27. 27.
    Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature — performance, mixing properties, and revisiting the property of transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  28. 28.
    Slamanig, D., Stranacher, K., Zwattendorfer, B.: User-centric identity as a service-architecture for eIDs with selective attribute disclosure. In: 19th ACM Symposium on Access Control Models and Technologies (SACMAT 2014), pp. 153–163. ACM (2014)Google Scholar
  29. 29.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  30. 30.
    Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Zwattendorfer, B., Slamanig, D.: On privacy-preserving ways to porting the austrian eID system to the public cloud. In: Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IFIP AICT, vol. 405, pp. 300–314. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • David Derler
    • 1
  • Christian Hanser
    • 1
  • Daniel Slamanig
    • 1
  1. 1.Institute for Applied Information Processing and Communications (IAIK)Graz University of Technology (TUG)GrazAustria

Personalised recommendations