Automatic Robot Calibration for the NAO

  • Tobias Kastner
  • Thomas Röfer
  • Tim Laue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8992)


In this paper, we present an automatic approach for the kinematic calibration of the humanoid robot NAO. The kinematic calibration has a deep impact on the performance of a robot playing soccer, which is walking and kicking, and therefore it is a crucial step prior to a match. So far, the existing calibration methods are time-consuming and error-prone, since they rely on the assistance of humans. The automatic calibration procedure instead consists of a self-acting measurement phase, in which two checkerboards, that are attached to the robot’s feet, are visually observed by a camera under several different kinematic configurations, and a final optimization phase, in which the calibration is formulated as a non-linear least squares problem, that is finally solved utilizing the Levenberg-Marquardt algorithm.


Joint Angle Humanoid Robot Forward Kinematic Automatic Calibration Joint Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the members of the team B-Human for providing the software framework for this work. This work has been partially funded by DFG through SFB/TR 8 “Spatial Cognition”.


  1. 1.
    Bennett, S., Lasenby, J.: ChESS - quick and robust detection of chess-board features. Comput. Vis. Image Underst. 118, 197–210 (2014)CrossRefGoogle Scholar
  2. 2.
    Birbach, O., Bäuml, B., Frese, U.: Automatic and self-contained calibration of a multi-sensorial humanoid’s upper body. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, pp. 3103–3108 (2012)Google Scholar
  3. 3.
    Elatta, A.Y., Gen, L.P., Zhi, F.L., Daoyuan, Y., Fei, L.: An overview of robot calibration. IEEE J. Robot. Autom. 3, 74–78 (2004)Google Scholar
  4. 4.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: The NAO humanoid: a combination of performance and affordability. CoRR abs/0807.3223 (2008)Google Scholar
  5. 5.
    Kastner, T.: Automatische Roboterkalibrierung für den humanoiden Roboter NAO. Diploma thesis, Universität Bremen (2014)Google Scholar
  6. 6.
    Laue, T., Spiess, K., Röfer, T.: SimRobot – a general physical robot simulator and its application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Markowsky, B.: Semiautomatische Kalibrierung von Naogelenken. Bachelor thesis, Universität Bremen (2011)Google Scholar
  9. 9.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Nickels, K.M., Baker, K.: Hand-eye calibration for Robonaut. Technical report, NASA Summer Faculty Fellowship Program Final Report, Johnson Space Center (2003)Google Scholar
  11. 11.
    Pradeep, V., Konolige, K., Berger, E.: Calibrating a multi-arm multi-sensor robot: a bundle adjustment approach. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. STAR, vol. 79, pp. 211–225. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Röfer, T., Laue, T., Müller, J., Bartsch, M., Batram, M.J., Böckmann, A., Böschen, M., Kroker, M., Maaß, F., Münder, T., Steinbeck, M., Stolpmann, A., Taddiken, S., Tsogias, A., Wenk, F.: B-Human team report and code release 2013 (2013).
  13. 13.
    Strobl, K.H., Hirzinger, G.: Optimal hand-eye calibration. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), pp. 4647–4653. IEEE, Beijing (2006)Google Scholar
  14. 14.
    Wang, Z., Wu, W., Xu, X.: Auto-recognition and auto-location of the internal corners of planar checkerboard image. In: International Conference on Intelligent Computing, Heifei, China, pp. 473–479 (2005)Google Scholar
  15. 15.
    Wiest, U.: Kinematische Kalibrierung von Industrierobotern. Berichte aus der Automatisierungstechnik. Shaker Verlag, Aachen (2001)Google Scholar
  16. 16.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Fachbereich 3 – Mathematik und InformatikUniversität BremenBremenGermany
  2. 2.Deutsches Forschungszentrum Für Künstliche Intelligenz, Cyber-Physical SystemsBremenGermany

Personalised recommendations