A Disciplinary Analysis of Internet Science

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9089)

Abstract

Internet Science is an interdisciplinary field. Motivated by the unforeseen scale and impact of the Internet, it addresses Internet-related research questions in a holistic manner, incorporating epistemologies from a broad set of disciplines. Nonetheless, there is little empirical evidence of the levels of disciplinary representation within this field.

This paper describes an analysis of the presence of different disciplines in Internet Science based on techniques from Natural Language Processing and network analysis. Key terms from Internet Science are identified, as are nine application contexts. The results are compared with a disciplinary analysis of Web Science, showing a surprisingly low amount of overlap between these two related fields. A practical use of the results within Internet Science is described. Finally, next steps are presented that will consolidate the analysis regarding representation of less technologically-oriented disciplines within Internet Science.

Keywords

Internet Science Disciplinary analysis Interdisciplinarity Bibliometrics Natural language processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Network of Excellence in Internet Science, Grant agreement 288021, Description of Work (December 06, 2011) Google Scholar
  2. 2.
    Hooper, C.J., Dix, A.: Web science and human-computer interaction: forming a mutually supportive relationship. ACM Interactions 20(3), 52–57 (2013)CrossRefGoogle Scholar
  3. 3.
    Dini, P., Sartori, L.: Science as Social Construction. In: International Conference on Internet Science, pp. 42–51 (2013)Google Scholar
  4. 4.
    Guevara, K., Blackwell, A.: A Reflective Examination of a Process for Innovation and Collaboration in Internet Science. In: International Conference on Internet Science, pp. 37–46 (2013)Google Scholar
  5. 5.
    Hooper, C.J., Millard, D.E., Azman, A.: Interdisciplinary Coups to Calamities (work-shop). In: Web Science, Bloomington, Indiana, USA (2014)Google Scholar
  6. 6.
    Hooper, C.J., Bordea, G., Buitelaar, P.: Web Science and the Two (Hundred) Cultures: Representation of Disciplines Publishing in Web Science. In: ACM Web Science, Paris, France (2013)Google Scholar
  7. 7.
    Lungeanu, A.: Understanding the assembly of interdisciplinary teams. Journal of Informetrics 8(1), 59–70 (2014)CrossRefGoogle Scholar
  8. 8.
    Callon, M., Cortial, J., Turner, W., Bauin, S.: From Translations To Problematic Networks – An Introduction To Co-Word Analysis. Social Science Information 22(2), 191–235 (1983)CrossRefGoogle Scholar
  9. 9.
    Chen, C., Carr, L.: Trailblazing the literature of hypertext: author co-citation analysis (1989–1998). In: 10th ACM Conference on Hypertext and Hypermedia (1999)Google Scholar
  10. 10.
    Henry, N., Goodell, H., Elmqvit, N., Fekete, J.: 20 Years of 4 HCI Conferences: A Visual Exploration. International Journal of Human Computer Interaction - Reflections on Human-Computer Interaction 23(3), 239–285 (2007)CrossRefGoogle Scholar
  11. 11.
    Nagel, T., Duval, E., Heidmann, F.: Exploring the Geospatial Network of Scientific Collaboration on a Multitouch Table. In: 22nd ACM Conference on Hypertext and Hypermedia, demo (2011)Google Scholar
  12. 12.
    Coulter, N., Monarch, I., Konda, S.: Software engineering as seen through its research literature: A study in co-word analysis. Journal of the American Society for Information Science 49(13), 1206–1223 (1998)CrossRefGoogle Scholar
  13. 13.
    Bordea, G., Buitelaar, P.: DERIUNLP: A context based approach to automatic keyphrase extraction. In: Proceedings of the 5th International Workshop on Semantic Evaluation, Stroudsburg, PA, USA (2010)Google Scholar
  14. 14.
    Lopez-Herrera, A., Cobo, M., Herrera-Viedma, E., Herrera, F.: A bibliometric study about the reseach based on hybridating the fuzzy logic field and the other computational intelligent techniques: A visual approach. International Journal of Hybrid Intelligent Systems 7(1), 17–32 (2010)MATHGoogle Scholar
  15. 15.
    Wang, Z.Y., Li, G., Li, C.Y., Li, A.: Research on the semantic-based co-word analysis. Scientometrics 90(3), 855–875 (2012)CrossRefGoogle Scholar
  16. 16.
    Ananiadou, S.: A methodology for automatic term recognition. In: The 15th Conference on Computational Linguistics (1994)Google Scholar
  17. 17.
    Velardi, P., Sclano, F.: Termextractor: a web application to learn the common terminology of interest groups and research communities. In: 7th Conference on Terminologie et Intelligence Artificielle (2007)Google Scholar
  18. 18.
    Zhang, Z., Iria, J., Brewster, C., Ciravegna, F.: A comparative evaluation of term recognition algorithms. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation, Marrakech, Morocco (2008)Google Scholar
  19. 19.
    Bordea, G., Buitelaar, P., Polajnar, T.: Domain-independent term extraction through domain modelling. In: The 10th International Conference on Terminology and Artificial Intelligence, Paris, France (2013)Google Scholar
  20. 20.
    Hooper, C., Marie, N., Kalampokis, E.: Dissecting the Butterfly: Representation of Disciplines Publishing at the Web Science Conference Series. In: Proc. ACM WebSci 2012 (2012)Google Scholar
  21. 21.
    Kraker, P., Jack, K., Schloegl, C., Trattner, C., Lindstaedt, S.: Head Start: Improving Academic Literature Search with Overview Visualizations based on Readership Statistics. In: Proc. ACM WebSci 2013 (2013)Google Scholar
  22. 22.
    Sahal, A., Wyatt, S., Passi, S., Scharnhorst, A.: Mapping EINS–An exercise in mapping the Network of Excellence in Internet Science. In: The 1st International Conference on Internet Science (2013)Google Scholar
  23. 23.
    Monaghan, F., Bordea, G., Samp, K., Buitelaar, P.: Exploring Your Research: Sprinkling some Saffron on Semantic Web Dog Food. In: Semantic Web Challenge at the International Semantic Web Conference (2010)Google Scholar
  24. 24.
    Bordea, G.: Domain adaptive extraction of topical hierarchies for Expertise Mining (Doctoral dissertation) (2013)Google Scholar
  25. 25.
    Navigli, R., Velardi, N., Faralli, S.: A graph-based algorithm for inducing lexical taxonomies from scratch. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (2011)Google Scholar
  26. 26.
    Barthélémy, M.: Betweenness centrality in large complex networks. The European Physical Journal B - Condensed Matter and Complex Systems 38(4), 163–168 (2004)CrossRefGoogle Scholar
  27. 27.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008 (2008)Google Scholar
  28. 28.
    Fdidia, S., Tiropanis, T., Brown, I., Marsden, C., Salamatian, K.: 1st International Workshop on Internet Science and Web Science Synergies. In: ACM Web Science 2013, Paris, France (2013)Google Scholar
  29. 29.
    Hooper, C.J. (ed.): EINS Deliverable 2.1.2: Repository of methodologies, design tools and use cases. Network of Excellence in Internet Science FP7-288021 (2014)Google Scholar
  30. 30.
    Hooper, C.J., Hedge, N., Hutchison, D., Papadimitrious, D., Passarella, A., Sourlas, V., Wuchner, P.: EINS Deliverable 2.3: Whitepaper on recommendations for funding agencies. Network of Excellence in Internet Science FP7-288021 (2014)Google Scholar
  31. 31.
    Stavrakakis, I., Hutchison, D.: EINS Deliverable 13.2.1: Internet Science - Going Forward: Internet Science Roadmap (Preliminary Version). Network of Excellence in Internet Science FP7-288021 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Clare J. Hooper
    • 1
  • Bruna Neves
    • 1
  • Georgeta Bordea
    • 2
  1. 1.The University of Southampton IT Innovation CentreSouthamptonUK
  2. 2.Insight, National University of IrelandGalwayIreland

Personalised recommendations