Advertisement

From Trillas’ Negations and Antonyms to a Set Representation of Contradiction Within Bipolar and Other Extensions of Fuzzy Sets

Chapter
  • 610 Downloads
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 323)

Abstract

In 1979, Enric Trillas started to interest in in fuzzy connectives. His first paper on this topic was ”Funciones de negacin en la teora de subconjuntos difusos” ([9]) (Negation functions in the theory of fuzzy subsets), which appeared in Spanish in the Stochastica journal. This work, focused on the characterization of strong negations, has been so relevant for the development of fuzzy theory that it was translated into English and widely cited in the last 35 years.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aisbett, J., Rickard, J.T., Morgenthaler, D.G.: Type-2 Fuzzy Sets as Functions on Spaces. IEEE Transactions on Fuzzy Systems 18(4), 841–844 (2010)CrossRefGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, (deposed in Central Science-Technical Library of Bulgarian academy of Science, 1697/1984) (1983)Google Scholar
  3. 3.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31(3), 343–349 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Atanassov, K.T.: Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s paper Terminological difficulties in fuzzy set theory - the case of Intuitionistic fuzzy sets. Fuzzy Sets and Systems 156(3), 496–499 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79, 403–405 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bustince, H., Barrenechea, E., Pagola, M.: Generation of interval-valued fuzzy and Atanassov’s intuitionistic fuzzy connectives from fuzzy connectives and from K(alpha) operators. Laws for conjunctions and disjunctions. Amplitude. International Journal of Intelligent Systems 23, 680–714 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bustince, H., Montero, J., Pagola, M., Barrenechea, E., Gómez, D.: A survey on interval-valued fuzzy sets. In: Pedrycz, W., Skowron, A., Kreinovichedrycz, V. (eds.) Handbook of Granular Computing, ch. 22. John Wiley and Sons, New York (2008)Google Scholar
  9. 9.
    Bustince, H., Herrera, F., Montero, J.: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. STUDFUZZ, vol. 220. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Cacioppo, J.T., Gardner, W.L., Bernston, G.G.: Beyond bipolar conceptualization and measures The case of attitudes and evaluative space. Personality and Social Psychology Review 1(1), 3–25 (1997)CrossRefGoogle Scholar
  11. 11.
    Cornelis, C., Arieli, O., Deschrijver, G., Kerre, E.E.: Uncertainty modeling by bilattice-based squares and triangles. IEEE Transactions on Fuzzy Systems 15(2), 161–175 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Deng, J.L.: Introduction to grey system theory. Journal of Grey Systems 1, 1–24 (1989)zbMATHGoogle Scholar
  13. 13.
    Deschrijver, G., Kerre, E.E.: On the position of Intuitionistic fuzzy set theory in the framework of theories modelling imprecision. Information Sciences 177, 1860–1866 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. International Journal of Intelligent Systems 23, 866–877 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Dubois, D., Ostasiewicz, W., Prade, H.: Fuzzy sets: history and basic notions. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, pp. 80–93. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  16. 16.
    Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory – The case of “Intuitionistic Fuzzy Sets”. Fuzzy sets and Systems 156(3), 485–491 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Transactions on Systems Man and Cybernetics 23(2), 610–614 (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Goguen, J.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Harding, J., Walker, C., Walker, E.: The variety generated by the truth value algebra of type-2 fuzzy sets. Fuzzy Sets and Systems 161(5), 735–749 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets Systems 122, 327–348 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  22. 22.
    Lee, K.M.: Bipolar-valued fuzzy sets and their operations. In: Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, pp. 307–312 (2000)Google Scholar
  23. 23.
    Lee, K.M.: Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets. J. Fuzzy Logic Intelligent Systems 14, 125–129 (2004)Google Scholar
  24. 24.
    Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Information Sciences 177, 84–110 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Information and Control 31, 312–340 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Montero, J., Gomez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Sets Systems 158, 2429–2442 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The measurement of meaning. University of Illinois Press, Urbana (1957)Google Scholar
  28. 28.
    Öztürk, M., Tsoukiás, A.: Modelling uncertain positive and negative reasons in decision aiding. Decision Support Systems 43(4), 1512–1526 (2007)CrossRefGoogle Scholar
  29. 29.
    Patrascu, V.: Multi-valued Color Representation Based on Frank t-norm Properties. In: Proc. IPMU 2008, Málaga, Spain, June 22-27, pp. 1215–1222 (2008)Google Scholar
  30. 30.
    Pradea, A., Trillas, E.: Aggregation, Non-Contradiction and Excluded-Middle. Mathware and Soft Computing XIII, 189–201 (2006)Google Scholar
  31. 31.
    Pradea, A., Trillas, E.: A Aggregation operators from the ancient NC and EM point of view. Kybernetika 42, 243–260 (2006)MathSciNetGoogle Scholar
  32. 32.
    Sambuc, R.: Fonctions ϕ-flues. Application á l’aide au diagnostic en pathologie thryoidienne. PhD. Thesis, Université de Marseille, France (1975)Google Scholar
  33. 33.
    Slovic, P., Peters, E., Finucane, M.L., MacGregor, D.G.: Affect, risk, and decision making. Health Psychology 24(4), S35–S40 (2005)Google Scholar
  34. 34.
    Smarandache, F.: A unifying field in logics: neutrosophic logic. Multiple-Valued Logic 8(3), 385–438 (2002)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Szmidt, E., Kacprzyk, J.: Using intuitionistic fuzzy sets in group decision making. Control and Cybernetics 31(4), 1037–1053 (2002)zbMATHGoogle Scholar
  36. 36.
    Torra, V., Miyamoto, S., Endo, Y.: On intuitionistic fuzzy clustering for its application to privacy. In: Conference Information: IEEE International Conference on Fuzzy Systems, Hong Kong, Peoples R China, IEEE International Conference on Fuzzy Systems, 1–5, 1042–1048 (2008)Google Scholar
  37. 37.
    Xu, Z.S., Chen, J.A., Wu, J.J.: Clustering algorithm for intuitionistic fuzzy sets. Information Sciences 178(19), 3775–3790 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Torres-Blanc, C., Cubillo, S., Castineira, E.: An axiomatic model for measuring contradiction and N-contradiction between two AIFSs. Information Sciences 180(6), 834–845 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Trillas, E.: Sobre funciones de negación en la teoria de los conjuntos difusos. Stochastica 3(1), 47–59 (1979)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Turksen, I.B., Bilgic, T.: Interval valued strict preference with Zadeh triples. Fuzzy Sets and Systems 78(2), 183–195 (1996)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Ye, J.: Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. European Journal of Operational Research 205(1), 202–204 (2010)CrossRefzbMATHGoogle Scholar
  42. 42.
    Zhang, W.R.: NPN Fuzzy Sets and NPN Qualitative Algebra: A Computational Framework for Bipolar Cognitive Modeling and Multiagerit Decision Analysis. IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics 26(4), 561–574 (1996)CrossRefGoogle Scholar
  43. 43.
    Zhang, W.R.: Bipolar logic and bipolar fuzzy partial orderings for clustering and coordination. In: Proc. of 6th Joint Conference on Information Sciences, North Carolina, USA, March 8-13, pp. 85–88 (2002)Google Scholar
  44. 44.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Zadeh, L.A.: Quantitative fuzzy semantics. Information Sciences 3, 159–176 (1971b)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Public University of NavarraPamplonaSpain
  2. 2.Complutense University of MadridMadridSpain

Personalised recommendations